10 результати
Urease (EC 3.5.1.5., urea amidohydrolase) catalyzes the hydrolysis of urea to ammonia and carbon dioxide. Urease is present to a greater abundance in plants and plays significant role related to nitrogen recycling from urea. But little is known about the structure and function of the urease derived
In Arabidopsis thaliana, urease transcript levels increased sharply between 2 and 4 d after germination (DAG) and were maintained at maximal levels until at least 8 DAG. Seed urease specific activity declined upon germination but began to increase in seedlings 2 DAG, reaching approximately 75% of
Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt
Plant orthologs of the bacterial urease accessory genes ureD and ureF, which are required for the insertion of the nickel ion at the active site, have been isolated from soybean ( Glycine max L. Merr.), tomato ( Lycopersicon esculentum) and Arabidopsis thaliana. The functionality of soybean UreD and
Urease is a nickel-containing urea hydrolase involved in nitrogen recycling from ureide, purine, and arginine catabolism in plants. The process of urease activation by incorporation of nickel into the active site is a prime example of chaperone-mediated metal transfer to an enzyme. Four urease
Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease
In this study, the interaction of biosynthesized silver nanoparticles (BSNP) with native soil via plant transport was assessed in model pathosystem of Arabidopsis thaliana and Alternaria brassicicola. Foliar application of 5 μg/mL of BSNP reduced number of spores of fungi to 2.2 × 105 from 7 × 105,
Urea is the most widespread nitrogen (N) fertilizer worldwide and is rapidly degraded in soil to ammonium by urease. Ammonium is either taken up by plant roots or is further processed to nitrate by soil microorganisms. However, urea can be taken up by roots and is further degraded to ammonium by
Since NH4+ is one of the most important limiting nitrogen sources for plant growth, ammonium uptake and transport system has particular attention. In plant cells, ammonium transporters (AMTs) are responsible for ammonium uptake and transport. In previous studies, we identified
Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In