Сторінка 1 від 42 результати
In this study, the effect of two metal-immobilizing bacterial strains, Serratia liquefaciens CL-1 and Bacillus thuringiensis X30, on the availability of Cd and Pb and the metal accumulation in potato tubers, as well as the underlying mechanisms in metal-contaminated soils were characterized.
The activation of the nickel metalloenzyme urease is a complex process. In bacteria, several urease accessory proteins are essential for incorporation of nickel into the active centre of urease. Comparatively little is known about the activation process and the proteins involved in plants. We cloned
Globally, urea is the most widely used nitrogen fertilizer and is made accessible to plants via the urease reaction. However, sequence information for the plant enzyme is scarce. A cDNA encoding urease from soybean (Glycine max) has been cloned and sequence information has been obtained for two
The influence of urease activity on N distribution and losses after foliar urea application was investigated using wild-type and transgenic potato (Solanum tuberosum cv Désirée) plants in which urease activity was down-regulated. A good correlation between urease activity and (15)N urea metabolism
Ochrobactrum spp. are ubiquitous bacteria attracting growing attention as important members of microbiomes of plants and nematodes and as a source of enzymes for biotechnology. Strain Ochrobactrum sp. A44T was isolated from the rhizosphere of a field-grown potato in Gelderland, the Netherlands. The
Yard waste compost provides an organic amendment useful for improving soil structure and nutrient status. The activities of the enzymes hydrolyzing urea (urease) and sucrose (invertase) in the rhizosphere of potato plants were determined under field conditions. Soil urease and invertase activities
Fungal pathogenicity is governed by environmental factors, with nitrogen playing a key role in triggering pathogenic development. Spores germinating on the plant cuticle are exposed to a nitrogen-free environment, and reprograming of nitrogen metabolism is required for bridging the time needed to
Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)-Mn(II) center and is distinguished from other PAPs by its increased
A bacterial strain named BSTT44(T) was isolated in the course of a study of endophytic bacteria occurring in stems and roots of potato growing in a soil from Salamanca, Spain. The 16S rRNA gene sequence had 99.7% identity with respect to that of its closest relative, Pseudomonas psychrophila E-3T,
Apical leaf curl disease has emerged as a new disease in potato during the last decade in India due to a change in planting date and an increased whitefly population. Its incidence is on the rise threatening the cultivation of potato across the country. Hence, a PCR assay was developed for the
The Andean Páramos are high mountain ecosystems whose soils are essential for the management of South American water resources, but research on anthropic impacts to these soils is currently minimal and insufficient. The objective of this study was to evaluate the impacts of potato (Solanum
This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato-Common vetch (P-C), Potato-Black medic (P-B) and Potato-Longdong alfalfa (P-L) in a semi-arid area of China. The study also determined the effects of
We propose experimental strategies to expand our understanding of the role of Ni in plants, beyond the Ni-metallocenter of urease, still the only identified Ni-containing plant enzyme. While Ni has been considered an essential mineral for plants there is a clear lack of knowledge of its involvement
A bacterial strain designated A4STR04(T) was isolated from the inner root tissue of potatoes in Spain. Phylogenetic analysis based on the 16S rRNA gene sequence placed the isolate into the genus Fontibacillus, being most closely related to Fontibacillus panacisegetis KCTC 13564(T) with 99% identity.
We analysed, using a polyphasic taxonomic approach, two bacterial strains coded BSTT30T and BSTT40, isolated in the course of a study of endophytic bacteria occurring in the stems and roots of potatoes growing in soil from Salamanca, Spain. The 16S rRNA gene sequence was identical in both strains