Сторінка 1 від 28 результати
We have investigated the genetics and molecular biology of orange flesh colour in potato (Solanum tuberosum L.). To this end the natural diversity in three genes of the carotenoid pathway was assessed by SNP analyses. Association analysis was performed between SNP haplotypes and flesh colour
The effects of genetically modified (GM), zeaxanthin-accumulating potato plants on microbial communities in the rhizosphere were compared to the effects of different potato cultivars. Two GM lines and their parental cultivar, as well as four other potato cultivars, were grown in randomized field
Zeaxanthin is an important dietary carotenoid but its abundance in our food is low. In order to provide a better supply of zeaxanthin in a staple crop, two different potato (Solanum tuberosum L.) varieties were genetically modified. By transformation with sense and antisense constructs encoding
Potato has been genetically engineered for the production of commercially important ketocarotenoids including astaxanthin (3,3'-dihydroxy 4,4'-diketo-beta-carotene). To support the formation of 3-hydroxylated and 4-ketolated beta-carotene, a transgenic potato line accumulating zeaxanthin due to
Yellow fleshed potatoes contain significant amounts of lutein and zeaxanthin but the bioaccessibility of potato carotenoids has not yet been investigated. The purpose of this study was to estimate the in vitro bioaccessibility of carotenoids provided by potato. Lutein and zeaxanthin concentrations
The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato tubers. An increase in ABA and ABA metabolite content was observed 48h after wounding and remained elevated through 96h. Wounding induced dramatic
Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this
BACKGROUND
Plant secondary metabolites, including phenylpropanoids and carotenoids, are stress inducible, have important roles in potato physiology and influence the nutritional value of potatoes. The type and magnitude of environmental effects on tuber phytonutrients is unclear, especially under
At harvest, and for an indeterminate period thereafter, potato tubers will not sprout and are physiologically dormant. Abscisic acid (ABA) has been shown to play a critical role in tuber dormancy control but the mechanisms controlling ABA content during dormancy as well as the sites of ABA synthesis
After wheat and rice, potato is the third most important staple food worldwide. A collection of ten tetraploid (Solanum tuberosum) and diploid (S. phureja and S. chacoense) genotypes with contrasting carotenoid content was subjected to molecular characterization with respect to candidate carotenoid
The influence of photosynthetic activity on the light-dependent adaptation of the pool size of the violaxanthin cycle pigments (violaxanthin + antheraxanthin + zeaxanthin) was studied in leaves of wild-type and transgenic potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.) plants. The
The carotenoid pattern of four yellow- and four white-fleshed potato cultivars (Solanum tuberosum L.), common on the German market, was investigated using HPLC and LC(APCI)-MS for identification and quantification of carotenoids. In each case, the carotenoid pattern was dominated by violaxanthin,
Potato (Solanum tuberosum L.) tubers contain a wide range of carotenoid contents. To decipher the key factors controlling carotenoid levels in tubers, four potato lines (Atlantic, Désirée, 91E22 and POR03) were examined by a combination of biochemical, molecular and genomics approaches. These lines
The carotenoid zeaxanthin accumulates in the human macula lutea and protects retinal cells from blue light damage. However, zeaxanthin intake from food sources is low. Increasing zeaxanthin in common foods such as potatoes by traditional plant breeding or by genetic engineering could contribute to
The antioxidant profile of 23 native Andean potato cultivars has been investigated from a human nutrition perspective. The main carotenoid and tocopherol compounds were studied using high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) and a fluorescence detector,