Trang 1 từ 254 các kết quả
A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA),
Cell expansion in plants requires cell wall biosynthesis and rearrangement. During periods of rapid elongation, such as during the growth of etiolated hypocotyls and primary root tips, cells respond dramatically to perturbation of either of these processes. There is growing evidence that this
Control of the levels of the plant hormone ethylene is crucial in the regulation of many developmental processes and stress responses. Ethylene production can be controlled by altering endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene or by
1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene. The movement of ACC across the plasma membrane (PM) has been implicated in various physiological contexts during environmental adaptation and differentiation in higher plants. A PM-localized transporter in
Azetidine-2-carboxylic acid, the 4-membered ring noranalogue of proline, is regularly used in the study of proline metabolism as well as the study of protein conformation. We prepared D,L-[2,3-3H]azetidine-2-carboxylic acid with an optimized 10% yield from commercially available
Treatment of the Arabidopsis thaliana root with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) immediately imposes a reduced maximal cell length beyond which further elongation is blocked. Here, we investigated possible apoplastic reactions involved in the inhibition of cell
The transcriptional response to metabolites is an important mechanism by which plants integrate information about cellular energy and nutrient status. Although some carboxylic acids have been implicated in the regulation of gene expression for select transcripts, it is unclear whether all carboxylic
The branched-chain amino acid (BCAA) related 2-hydroxy carboxylic acid isoleucic acid (ILA) enhances salicylic acid-mediated pathogen defense in Arabidopsis thaliana. ILA has been identified in A. thaliana as its glucose conjugate correlated with the activity of the small-molecule
Ethylene is a gaseous hormone important for adaptation and survival in plants. To further understand the signaling and regulatory network of ethylene, we used a phenotype-based screening strategy to identify chemical compounds interfering with the ethylene response in Arabidopsis thaliana. By
Mitogen-activated protein kinases (MAPKs) are implicated in regulating plant growth, development, and response to the environment. However, the underlying mechanisms are unknown because of the lack of information about their substrates. Using a conditional gain-of-function transgenic system, we
In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 μm proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the
Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is
Ethylene is a phytohormone that has gained importance through its role in stress tolerance and fruit ripening. In our study we evaluated the functional potential of the enzyme involved in ethylene biosynthesis of plants called ACC (aminocyclopropane-1-carboxylic acid) oxidase which converts
1-Aminocyclopropane-1-carboxylic acid (ACC), a biosynthetic precursor of ethylene, has long been proposed to act as a mobile messenger in higher plants. However, little is known about the transport system of ACC. Recently, our genetic characterization of an ACC-resistant mutant with normal ethylene
Indolic secondary metabolites play an important role in pathogen defense in cruciferous plants. In Arabidopsis (Arabidopsis thaliana), in addition to the characteristic phytoalexin camalexin, derivatives of indole-3-carbaldehyde (ICHO) and indole-3-carboxylic acid (ICOOH) are synthesized from