中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Effect of Soft Fruit on Postprandial Blood Glucose

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
状态招聘中
赞助商
University of Aberdeen

关键词

抽象

Dietary strategies for alleviating health complications associated with type 2 diabetes (T2D) are being pursued as alternatives to pharmaceutical interventions. Berries such as blackcurrants that are rich in polyphenols may influence carbohydrate digestion and absorption and thus postprandial glycaemia. In addition berries have been reported to alter incretins as well as to have anti-oxidant and anti-inflammatory properties that may also affect postprandial glycaemia. This study investigated the acute affect blackcurrants on glucose metabolism in overweight/obese volunteers .

描述

Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT.

The consumption of the currants will be followed by an oral glucose tolerance test (OGTT) with Polycal (complex carbohydrate) or glucose (simple carbohydrate) as the carbohydrate load.

There will be a one week minimum wash out period between each intervention. All interventions will be randomised and blinded as far as possible in a cross-over design where the volunteers are acting as their own control. The volunteers will be asked to consume a low phytochemical diet three days prior to taking the currants all occasions. In addition, they will be asked to record what they ate over the same period in a simple food diary.

The following intervention will be carried out on 16 overweight/obese male/postmenopausal female non-smoker volunteers:

1. Control: sugar matched (matched to currant sugar content) water with polycal (complex carbohydrate load)

2. Blackcurrants (which contain anthocyanins; 200grams) with polycal (complex carbohydrate load)

3. Blackcurrants (which contain anthocyanins; 200grams) with glucose (simple carbohydrate load)

4. Greencurrants (which naturally contain no anthocyanins; 200grams) with polycal (complex carbohydrate load)

Note: the polycal will contain the equivalent glucose load as given in intervention 3 assuming complete hydrolysis of all carbohydrates.

日期

最后验证: 03/31/2019
首次提交: 11/10/2014
提交的预估入学人数: 11/12/2014
首次发布: 11/13/2014
上次提交的更新: 04/15/2019
最近更新发布: 04/16/2019
实际学习开始日期: 10/31/2014
预计主要完成日期: 08/31/2019
预计完成日期: 08/31/2019

状况或疾病

Type 2 Diabetes

干预/治疗

Dietary Supplement: Blackcurrants with polycal OGTT

Dietary Supplement: Greencurrants with polycal OGTT

Dietary Supplement: Blackcurrants with glucose OGTT

Dietary Supplement: Sugar matched water with polycal OGTT

-

手臂组

干预/治疗
Experimental: Sugar matched water with polycal OGTT
Control: sugar matched (matched to currant sugar content) water with polycal Blackcurrants (200grams) with polycal Blackcurrants (200grams) with glucose Greencurrants (200grams) with polycal Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The OGTT will be carried out with glucose as a simple carbohydrate load or polycal as a complex carbohydrate load. Volunteers will be randomised into four groups (n=4 per group). One week wash out between treatments
Dietary Supplement: Sugar matched water with polycal OGTT
Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The consumption of the currants will be followed by an oral glucose tolerance test (OGTT) with Polycal (complex carbohydrate) or glucose (simple carbohydrate) as the carbohydrate load. The equivalent carbohydrate load will be standardised across the groups
Experimental: Blackcurrants with polycal OGTT
Blackcurrants (200grams) with polycal Blackcurrants (200grams) with glucose Greencurrants ( 200grams) with polycal Control: sugar matched (matched to currant sugar content) water with polycal Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The OGTT will be carried out with glucose as a simple carbohydrate load or polycal as a complex carbohydrate load as decribed above. Volunteers will be randomised into four groups (n=4 per group). One week wash out between treatments
Dietary Supplement: Blackcurrants with polycal OGTT
Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The consumption of the currants will be followed by an oral glucose tolerance test (OGTT) with Polycal (complex carbohydrate) or glucose (simple carbohydrate) as the carbohydrate load. The equivalent carbohydrate load will be standardised across the groups
Experimental: Blackcurrants with glucose OGTT
Blackcurrants (200grams) with glucose Greencurrants (200grams) with polycal Control: sugar matched (matched to currant sugar content) water with polycal Blackcurrants (200grams) with polycal Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The OGTT will be carried out with glucose as a simple carbohydrate load or polycal as a complex carbohydrate load as decribed above Volunteers will be randomised into four groups (n=4 per group). One week wash out between treatments
Dietary Supplement: Blackcurrants with glucose OGTT
Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The consumption of the currants will be followed by an oral glucose tolerance test (OGTT) with Polycal (complex carbohydrate) or glucose (simple carbohydrate) as the carbohydrate load. The equivalent carbohydrate load will be standardised across the groups
Experimental: Greencurrants with polycal OGTT
Greencurrants (200grams) with polycal Control: sugar matched (matched to currant sugar content) water with polycal Blackcurrants (200grams) with polycal Blackcurrants (200grams) with glucose Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The OGTT will be carried out with glucose as a simple carbohydrate load or polycal as a complex carbohydrate load as decribed above. Volunteers will be randomised into four groups (n=4 per group). One week wash out between treatments.
Dietary Supplement: Greencurrants with polycal OGTT
Sixteen overweight/obese volunteers from the Aberdeen area will be recruited into a randomised controlled study. Volunteers will be randomised into four groups matched for BMI and age and given 200 grams of blackcurrants (which contain anthocyanins) or greencurrants (which naturally contain no anthocyanins), followed by an OGTT. The consumption of the currants will be followed by an oral glucose tolerance test (OGTT) with Polycal (complex carbohydrate) or glucose (simple carbohydrate) as the carbohydrate load. The equivalent carbohydrate load will be standardised across the groups

资格标准

有资格学习的年龄 21 Years 至 21 Years
有资格学习的性别All
接受健康志愿者
标准

Inclusion Criteria:

- Obese male or female (postmenopausal) healthy non-smoking volunteers (BMI over 25kg/m2)

- Aged >21 and <70 years

Exclusion Criteria:

- Medical exclusion criteria

- Chronic illness, including:

- thromboembolic or coagulation disease

- unregulated thyroid disease

- kidney disease

- hepatic disease

- severe gastrointestinal disorders

- pulmonary disease (e.g. chronic bronchitis, COPD)

- diabetes

- Alcohol or any other substance abuse

- Eating disorders

- Psychiatric disorders (including severe depression, lithium treatment, schizophrenia, severe behavioural disorders)

- Non-postmenopausal women

- Medication exclusion criteria

- Oral steroids

- Tricyclic antidepressants, neuroleptics

- Anticoagulants

- Digoxin and anti-arrhythmics

- Chronic use of anti-inflammatories (e.g. high doses of aspirin, ibuprofen), Insulin, -Sulphonylureas, Thiazolidinediones (glitazones), metformin.

- Anti-obesity medication e.g. Orlistat

结果

主要结果指标

1. Plasma Glucose Area Under the Curve [Plasma was collected at -15, -10 and -5 (fasted) and at 15, 30, 45, 60, 90, 120, 150 and 300 min post currant ingestion]

次要成果指标

1. Plasma Insulin Area Under the Curve [Plasma was collected at -15, -10 and -5 (fasted) and at 15, 30, 45, 60, 90, 120, 150 and 300 min post currant ingestion]

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge