中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Role of A Disintegrin and Metalloproteinase (ADAM) in Epithelial Dysfunction

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
状态已完成
赞助商
University Medical Center Groningen

关键词

抽象

Despite emerging implications for ADAMs (and matrix metalloproteinases (MMPs)) in disease progression, the mechanisms that lead to activation of specific ADAMs (and MMPs) and their actions in chronic obstructive pulmonary disease (COPD) are still incompletely understood. In the current study, the researchers aim to investigate the effects of cigarette smoke on cellular parameters that are relevant for development of COPD and the involvement of ADAM activity in these effects. By studying the effects of ADAM inhibition, the researchers aim to provide novel insights in the role of ADAMs in the development of COPD, which may offer new therapeutic targets for the treatment of COPD.

描述

Smoking is the largest risk factor for the development of COPD. It has been shown in patients with COPD that smoking induces airway inflammation characterized by bronchial infiltration of neutrophils, macrophages, lymphocytes and mast cells. In addition, smoking accelerates lung function loss and increases bronchial hyperresponsiveness, symptoms, and even mortality in COPD. When inhaled, tobacco smoke first encounters the airway epithelium, which forms a barrier to environmental substances and limits their access to the subepithelial layer. There is suggestive evidence that impaired repair responses and loss of epithelial integrity in the airways play a crucial role in the pathogenesis and contribute to tissue remodeling in COPD. Remodeling of the airway epithelium, e.g., squamous metaplasia and mucous hyperplasia, is often observed in COPD.

Metalloproteases (MMPs) and A Disintegrin and Metalloproteinase (ADAM)s may play an important role in respiratory diseases. MMPs and ADAMs, a class of membrane-bound MMPs, form a family of enzymes involved in degrading extracellular matrix (ECM) components. Their proteolytic activity is involved in remodeling of the ECM, which is required for migration and repair processes and regulated tissue turn-over. However, aberrant activity can lead to tissue destruction and irreversible damage. Thus MMPs, and ADAMs may play an important role in respiratory diseases and a protease-antiprotease imbalance may contribute to airway remodeling and impaired epithelial repair in COPD. In addition, MMPs/ADAMs act in regulatory events in inflammation and airway remodeling by liberating adhesion molecules and shedding of growth factors and cytokines from the cell surface. Furthermore, ADAMs play a role in cell-cell and cell-matrix interactions by their so-called disintegrin domain. In epithelial cells, both MMPs and ADAMs are known to regulate intercellular contacts, cell-matrix contacts, migratory responses, shedding of cytokines/growth factors, and intracellular signaling pathways. Since increased MMP levels (e.g., MMP-9, 12) have been observed during COPD exacerbations and polymorphisms in specific ADAM genes (i.e., ADAM33) have been associated with COPD susceptibility, the activation of MMPs and ADAMs on the airway epithelium may play an important role in the pathogenesis of COPD. Reactive oxygen species present in cigarette smoke may activate Duox, leading to activation of ADAM17 in airway epithelial cells. ADAM17 has been described to be involved in the release of growth factors (TGF-α), leading to the release of proinflammatory cytokines (IL-8) and production of MUC5AC 10-13. TGF-α acts on the EGF receptor (EGFR), which is involved in the production of MUC5AC and goblet cell hyperplasia. IL-8 is a well-known chemo-attractant for neutrophils, and thus may play a central role in neutrophilic inflammation in COPD, leading to ROS production, the release of neutrophil elastase and emphysema.

Despite emerging implications for ADAMs (and MMPs) in disease progression, the mechanisms that lead to activation of specific ADAMs (and MMPs) and their actions in COPD are still incompletely understood. In the current study, we aim to investigate the effects of cigarette smoke on cellular parameters that are relevant for development of COPD and the involvement of ADAM activity in these effects. By studying the effects of ADAM inhibition, we aim to provide novel insights in the role of ADAMs in the development of COPD, which may offer new therapeutic targets for the treatment of COPD.

日期

最后验证: 12/31/2014
首次提交: 05/10/2009
提交的预估入学人数: 05/10/2009
首次发布: 05/11/2009
上次提交的更新: 01/14/2015
最近更新发布: 01/15/2015
实际学习开始日期: 04/30/2009
预计主要完成日期: 04/30/2012
预计完成日期: 11/30/2012

状况或疾病

Chronic Obstructive Pulmonary Disease

-

手臂组

干预/治疗
1
Healthy, non-smoking
2
healthy, ex-smoking
3
healthy, current-smokers
4
COPD, ex-smokers
5
COPD, smokers

资格标准

有资格学习的年龄 40 Years 至 40 Years
有资格学习的性别All
取样方式Probability Sample
接受健康志愿者
标准

Inclusion Criteria:

- Age between 40 and 75 years.

- Individuals who currently smoke ≥ 10 cigarettes/day and > 10 pack years.

- Documented FEV1 > 80% predicted, FEV1/FVC > 70%.

- Referred by own physician for a bronchoscopy.

Exclusion Criteria:

- Any disease that, as judged by the Investigator, could affect the outcome of this study.

- A respiratory tract infection within 4 weeks of the start of the study.

- History of myocardial infarction or documented myocardial ischemia or the presence of an artificial heart valve.

- Use of anticoagulants.

结果

主要结果指标

1. IL8-production [12 months]

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge