中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Method of reducing side effects of chemotherapy in cancer patients

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Alfred Rudolph
Vincent Tam
Maggie Quan

关键词

专利信息

专利号6462017
已提起04/30/2000
专利日期10/07/2002

抽象

A method for reducing the severity of chemotherapy side effects in cancer patients by administering thymosin .alpha..sub.1 in conjunction with the administration of a chemotherapy agent to the patient. As a result of the reduction of post-chemotherapy side effects, patients experience an increase in the quality of life.

索偿

What is claimed is:

1. A method of reducing side effects of chemotherapy in a cancer patient, said side effects being selected from the group consisting of loss of appetite, loss of sleep, fatigue, reduction in daily activity, decline in overall feeling, depression, nausea and vomiting and combinations of said side effects, comprising administering to a cancer patient thymosin .alpha..sub.1 (T.alpha..sub.1), said T.alpha..sub.1 being administered prior to administration to said patient of at least one chemotherapy agent selected from the group consisting of allopurinol sodium, dolasetron mesylate, pamidronate disodium, etidronate, fluconazole, epoetin alfa, levamisole HCL, amifostine, granisetron HCL, leucovorin calcium, sargramostim, dronabinol, mesna, filgrastim, pilocarpine HCL, octreotide acetate, dexrazoxane, ondansetron HCL, ondansetron, busulfan, carboplatin, cisplatin, thiotepa, melphalan HCL, melphalan, cyclophosphamide, ifosfamide, chlorambucil, mechlorethamine HCL, carmustine, lomustine, polifeprosan 20 with carmustine implant, streptozocin, doxorubicin HCL, bleomycin sulfate, daunirubicin HCL, dactinomycin, daunorucbicin citrate, idarubicin HCL, plimycin, mitomycin, pentostatin, mitoxantrone, valrubicin, cytarabine, fludarabine phosphate, floxuridine, cladribine, methotrexate, mercaptipurine, thioguanine, capecitabine, methyltestosterone, nilutamide, testolactone, bicalutamide, flutamide, anastrozole, toremifene citrate, tamoxifen, estramustine phosphate sodium, ethinyl estradiol, estradiol, esterified estrogens, conjugated estrogens, leuprolide acetate, goserelin acetate, medroxyprogesterone acetate, megestrol acetate, levamisole HCL, aldesleukin, irinotecan HCL, dacarbazine, asparaginase, etoposide phosphate, gemcitabine HCL, trastuzumab, altretamine, topotecan HCL, hydroxyurea, interferon alfa-2b, mitotane, procarbazine HCL, vinorelbine tartrate, E. coli L-asparaginase, Erwinia L-asparaginase, vincristine sulfate, denileukin diftitox, aldesleukin, rituximab, interferon alfa-2a, paclitaxel, docetaxel, BCG live (intravesical), vinblastine sulfate, etoposide, tretinoin, teniposide, porfimer sodium, fluorouracil, betamethasone sodium phosphate and betamethasone acetate, letrozole, etoposide citrororum factor, folinic acid, calcium leucouorin, 5-fluorouricil, adriamycin, cytoxan, and diamino dichloro platinum, said chemotherapy agent in combination with thymosin .alpha..sub.1 being administered in an amount effective to reduce said side effects of chemotherapy in said patient.

2. The method of claim 1 wherein said T.alpha..sub.1 also is administered subsequent to said chemotherapy agent.

3. The method of claim 1 wherein said T.alpha..sub.1 is administered on each of a plurality of days prior to said chemotherapy agent.

4. The method of claim 1 wherein a single administration of T.alpha..sub.1 is administered one day immediately prior to administration of said chemotherapy agent.

5. The method of claim 1 wherein a single administration of T.alpha..sub.1 is administered on each of two days immediately prior to administration of said chemotherapy agent.

6. The method of claim 1 wherein a single administration of T.alpha..sub.1 is administered on each of three days immediately prior to administration of said chemotherapy agent.

7. The method of claim 1 wherein a single administration of T.alpha..sub.1 is administered on each of four days immediately prior to administration of said chemotherapy agent.

8. The method of claim 1 wherein said chemotherapy agent is selected from the group consisting of etoposide citrororum factor, folinic acid, calcium leucouorin, 5-fluorouricil, adriamycin, cytoxan, diamino dichloro platinum and combinations of said chemotherapy agent.

9. The method of claim 2 wherein a single administration of T.alpha..sub.1 is administered one day immediately subsequent to administration of said chemotherapy agent.

10. The method of claim 2 wherein a single administration of T.alpha..sub.1 is administered on each of two days immediately subsequent to said administration of said chemotherapy agent.

11. The method of claim 2 wherein T.alpha..sub.1 is administered on a plurality of days prior to and subsequent to the administration of said chemotherapy agent.

12. The method of claim 2 wherein a single administration of T.alpha..sub.1 is administered one day immediately prior to and one day immediately subsequent to administration of said chemotherapy agent.

13. The method of claim 2 wherein a single administration of T.alpha..sub.1 is administered on each of two days immediately days prior to and two days immediately subsequent to the administration of said chemotherapy agent.

14. The method of claim 1 wherein T.alpha..sub.1 is administered at a dosage within a range of about 0.1-3.2 mg.

15. The method of claim 1 wherein T.alpha..sub.1 is administered at a dosage of about 1.6 mg.

描述

FIELD OF THE INVENTION

The present invention relates to improved treatment of cancer in animals, including humans, by reducing the side effects of chemotherapy.

BACKGROUND OF THE INVENTION

Cancers are a leading cause of death in animals and humans. The leading cancer therapies today are surgery, radiation and chemotherapy. In spite of advances in the field of cancer treatment, each of these known therapies has serious side effects. For example, surgery disfigures the patient or interferes with normal bodily functions. Chemotherapy or radiation therapies cause patients to experience acute debilitating symptoms including nausea, vomiting, diarrhea, hypersensitivity to light, hair loss, etc. The side effects of these cytotoxic compounds frequently limit the frequency and dosage at which they can be administered.

Chemotherapeutic agents have been found useful in treating cancer in humans. Broadly classified as antineoplastics, chemotherapeutic agents found to be of assistance in the suppression of tumors include but are not limited to alkyleting agents (e.g., nitrogen mustards), antimetabolites (e.G., pyrimidine analogs), radioactve isotopes (e.g., phosphorous and iodine), hormones (e.g., estrogens and adrenocorticosteroids), miscellaneous agents (e.g., substituted ureas) and natural products (e.g., vinca alkyloids and antibiotics). Although the preceding compounds are not curative agents, they are widely recognized in the medical profession as useful in the suppression, palliation, retardation and control of malignant tumors. While these compounds have been found to be effective and are in general clinical use as antiproliferative agents, there are well recognized drawbacks associated with their administration. The alkylating agents have marked cytotoxic action and the ability of these drugs to interfere with normal mitosis and cell division can be lethal. The antimetabolities can lead to anorexia, progressive weight loss, depression, and coma. Prolonged administration of antimetabolites can result in serious changes in bone marrow. Both the alkylating agents and the antimetabolities generally have a depressive effect on the immunosuppressive system. Prolonged administration of natural products such as vinca alkyloids can also result in bone marrow depression. Hydroxy urea and other chemically derived agents can lead to rapid reduction in levels of adrenocorticosteroids and their metabolites. The administration of hormonal compounds or radioactive isotopes is also undesireable from the viewpoint of inflicting damage on the immunosuppressive system and thereby disabling the body's defenses against common infections. In most instances, it would be preferable to employ a chemotherapeutic agent which is effective in controlling, retarding, or suppressing the growth of malignant tumors while simultaneously acting to stimulate the patient's immune system.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method is provided in which the side effects of chemotherapy in cancer patients are reduced by administering thymosin .alpha..sub.1 ("T.alpha..sub.1 ") in conjunction with the administration of the chemotherapy agent to the patient. The reduction in the severity of post-chemotherapy side effects increases the quality of life experienced by patients receiving chemotherapy.

DETAILED DESCRIPTION OF THE INVENTION

It is known that the thymus produces a family of polypeptides termed thymosin and perhaps several other thymic hormones and/or factors which play an important role in the maturation, differentiation and function of T-cells. Thymosin has been found to induce T-cell differentiation and enhance immunological functions in genetically athymic mice, in adult thymectisized mice and in NZB mice with severe autoimmune reactions, in tumor bearing mice and in mice with casein-induced amyloidosis.

Thymosin .alpha..sub.1, an acidic polypeptide isolated from thymosin fraction 5 is an immunomodulator that acts primarily by enhancing T-cell function and also has been shown to have direct anti-cancer effects. Thymosin .alpha..sub.1 has been found to stimulate T-cell maturation, differentiation and function.

It has been previously documented that thymosin .alpha..sub.1 reduces the incidence and severity of post-chemotherapy infections. It has now been found that the use of thymosin .alpha..sub.1 in conjunction with the administration of antineoplastics (chemotherapeutic agents) significantly improves the cancer patient's quality of life by reducing nausea, vomiting, loss of appetite, inability to sleep, decline in overall feeling, reduction in daily activity, fatigue and depression. The administration of thymosin .alpha..sub.1 does not appear to result in any side effects.

The mechanism by which thymosin .alpha..sub.1 acts to improve the patient quality of life is not yet known. Without being bound to any particular theory, one possibility may relate to the apparent ability of thymosin .alpha..sub.1 to block neurotransmitter receptors. It is believed that most chemotherapeutic agents activate the chemoreceptor trigger zone (CTZ) and that the CTZ chemotherapy interaction triggers the release of neurotransmitters that activate the vomiting center. CTZ neurotransmitters that are thought to cause emesis include but are not limited to, dopamine, serotonin, histamine, norepinephrine, apomorphine, neurotensin, vasoactive intestinal polypeptide (VIP). In vitro studies, have shown that thymosin .alpha..sub.1 has a VIP receptor binding effect. This may explain why thymosin .alpha..sub.1 can control vomiting in patients whose vomiting could not be controlled by 5-HT blockers.

The increase in quality of life may be due to thymosin .alpha..sub.1 's ability to control GI adverse effects like nausea and vomiting through the above described VIP receptor blocking effect or it could be the result of a reduction of low grade, clinically undetectable infections or some combination thereof.

In one embodiment of the present invention, the thymosin .alpha..sub.1 is administered prior to the administration of the chemotherapy. The thymosin .alpha..sub.1 may be administered on a single day or be administered on several days prior to the chemotherapy.

In another embodiment of the invention, the thymosin .alpha..sub.1 is administered following the administration of the antineoplastic agent. In this embodiment, the thymosin .alpha..sub.1 may be administered once or several times prior to the chemotherapy. This administration may take place on a single day or on a series of days prior to the administration of the antineoplastic agent.

In another embodiment of the invention, thymosin .alpha..sub.1 is administered prior to and subsequent to the administration of the antineoplastic agent. This administration may take place on one or multiple days prior to and one or multiple days subsequent to the chemotherapy.

In one preferred embodiment, thymosin .alpha..sub.1 is administered to cancer patients once each day on four days immediately preceding the administration of the antineoplastic agent and once on day 2 and on day 4 following chemotherapy.

T.alpha..sub.1 can be administered in any suitable way, such as by injection, infusion, or transcutaneously. Other methods of administration may also be possible, such as orally as a liquid or solid dosage form. In preferred embodiments T.alpha..sub.1 is injected.

Thymosin .alpha..sub.1 may be administered at any suitable dosage level, e.g., within a range of about 0.1-3 mg. In preferred embodiments, thymosin .alpha..sub.1 is administered via injection at a dosage of about 1.6 mg s.c.

Thymosin .alpha..sub.1 can be administered to reduce side effects of any suitable antineoplastic agents, including one or more antineoplastic agent selected from the group consisting of alkylating agents (e.g., nitrogen mustards), antimetabolites (e.g., pyrimidine analogs), radioactive isotopes (e.g., phosphorous and iodine), hormones (e.g., estrogens and adrenocorticosteroids), miscellaneous agents (e.g., substituted ureas) and natural products (e.g., vinca alkyloids and antibiotics). Examples of such anitneoplastic agents include but are not limited to the following:

Adjunct Antineoplasic Therapy Aloprim.TM. for Injection Anzemet.RTM. Injection Anzemet.RTM. Tablets Aredia.RTM. for Injection Didronel.RTM. I.V. Infusion Diflucan.RTM. Tablets, Injection, and Oral Suspension Epogen.RTM. for Injection Ergamisol.RTM. Tablets Ethyol.RTM. for Injection Kytril.RTM. Injection Kytril.RTM. Tablets Leucovorin Calcium for Injection Leucovorin Calcium Tablets Leukine.RTM. Marinol.RTM. Capsules Mesnex.RTM. Injection Neupogen.RTM. for Injection Procrit.RTM. for Injection Salagen.RTM. Tablets Sandostatin.RTM. Injection Zinecard.RTM. for Injection Zofran.RTM. Injection Zofran.RTM. ODT.TM. Orally Disintegrating Tablets Zofran.RTM. Oral Solution Zofran.RTM. Tablets Zyloprim.RTM. Tablets

Alkylating Agents Myleran.RTM. Tablets Paraplatin.RTM. for Injection Platinol.RTM. for Injection Platinol-AQ.RTM. Injection Thioplex.RTM. for Injection

Nitrogen Mustards Alkeran.RTM. for Injection Alkeran.RTM. Tablets Cytoxan.RTM. for Injection Cytoxan.RTM. Tablets Ifex.RTM. for Injection Leukeran.RTM. Tablets Mustargen.RTM. for Injection

Nitrosoureas BiCNU.RTM. CeeNU.RTM. Gliadel.RTM. Wafer Zanosar.RTM. Sterile Powder

Antibiotics Adriamycin.RTM. PFS/RDS for Injection Blenoxane.RTM. Cerubidine.RTM. for Injection Cosmegen.RTM. for Injection DaunoXome.RTM. Doxil.RTM. Injection Doxorubicin Hydrochloride for Injection, USP Idamycin PFS Injection Mithracin.RTM. for Intravenous Use Mutamycin.RTM. for Injection Nipent.RTM. for Injection Novantrone.RTM. for Injection Rubex.RTM. for Injection Valstar.TM. Sterile Solution for Intravesical Instillation

Antimetabolites Cytosar-U.RTM. Sterile Powder DepoCyt.TM. Injection Fludara.RTM. for Injection Sterile FUDR Leustatin.RTM. Injection Methotrexate Sodium Tablets, Injection, for Injection and LPF.RTM. Injection Purinethol.RTM. Tablets Thioguanine Tablets, Tabloid.RTM. Brand Xeloda.RTM. Tablets

Hormonal Agonists/Antagonists

Androgens Android.RTM. Capsules Niladron.RTM. Tablets Teslac.RTM. Tablets Testred.RTM. Capsules

Antiandrogens Casodex.RTM. Tablets Eulexin.RTM. Capsules

Antiestrogens Arimedex.RTM. Tablets Fareston.RTM. Tablets Femara.TM. Tablets Nolvadex.RTM. Tablets

Estrogen & Nitrogen Mustard Combination Emcyt.RTM. Capsules

Estrogens Estrace.RTM. Tablets Estinyl.RTM. Tablets Estratab.RTM. Tablets Premarin.RTM. Tablets

Gonadotropin Releasing Hormone (GNRH) Analogues Lupron.RTM. Depot Lupron.RTM. Injection Zoladex.RTM.

Progestins Depo-Provera.RTM. Sterile Aqueous Suspension Megace.RTM. Tablets

Immunomodulators Ergamisol.RTM. Tablets Proleukin.RTM. for Injection

Miscellaneous Antineoplastics Camptosar.RTM. Injection Celestone.RTM. Soluspan.RTM. Suspension DTIC-Dome.RTM. Elspar.RTM. for Injection Etopophos.RTM. for Injection Etoposide Injection Gemzar.RTM. for Injection Herceptin.RTM. I.V. Hexalen.RTM. Capsules Hycamtin.RTM. for Injection Hydrea.RTM. Capsules Hydroxyurea Capsules, USP Intron.RTM. A for Injection Lysodren.RTM. Tablets Matulane.RTM. Capsules Navelbine.RTM. Injection Oncapsar.RTM. Oncovin.RTM. Solution Vials and Hyporets Ontak.TM. Vials Proleukin.RTM. for Injection Rituxan.TM. for Infusion Rituxan.RTM. I.V. Roferon.RTM.-A Injection Taxol.RTM. Injection Taxotere.RTM. for Injection Concentrate TheraCys.RTM. Tice.RTM. BCG Vaccine, USP Velban.RTM. Vials VePesid.RTM. Capsules VePesid.RTM. for Injection Vesanoid.RTM. Capsules Vumon.RTM. for Injection

Photosensitizing Agents Photofrin.RTM. for Injection

Skin and Mucus Membrane Agents Efudex.RTM. Cream Efudex.RTM. Topical Solution Fluoroplex.RTM. Topical Cream Fluoroplex.RTM. Topical Solution

The invention is illustrated by the following Example, which is not intended to be limiting.

EXAMPLE 1

Method: A randomized crossover open label trial was performed. A total of sixty patients, twenty with lung cancer, twenty with gastric cancer and twenty with breast cancer were studied during two complete cycles of chemotherapy. All patients were randomized into two groups. In group 1, patients received chemotherapy with thymosin .alpha..sub.1 in the first cycle, and without thymosin .alpha..sub.1 in the second cycle. While patients in group 2 received chemotherapy without thymosin .alpha..sub.1 in the first cycle, and with thymosin .alpha..sub.1 in the second cycle. The patients were treated as follows:

Twenty lung cancer patients were treated with 100 mg of Etoposide IV on days 1-5 and 40 mg of Cisplatin I.V. on days 1-3 in a 21 day cycle.

Twenty gastric cancer patients were treated with 100 mg of Etoposide IV on days 1-5, 30 mg/m.sup.2 Calcium Leucovorin I.V. on days 1-5 and 500 mg/m.sup.2 5-Fluorouricil (5-FU) I.V. on days 1-5.

Twenty breast cancer patients were treated with 5-Fluorouricil 500 mg/m.sup.2, Adriamycin I.V. 30 mg/m.sup.2 I.V. on day 1 and cyclophosphamide 500 mg/m.sup.2 I.V. on day 1.

A mild anti-emetic consisting of 20 mg metoclopamide, I.M. and 5 mg Dexamethasone I.V. were given to all patients on days 1-5. All subjects on thymosin received six injections of 1.6 mg s.c. T.alpha..sub.1 on each of the four days immediately preceding the chemotherapy and on days two and four following chemotherapy. All patients who have completed the two cycles of chemotherapy, then were reallocated into two cohorts, A and B. Cohort A are patients with T.alpha..sub.1, and Cohort B are patients without T.alpha..sub.1.

Analysis: Quality of life was analyzed using a scored scale for (1) loss of appetite, (2) loss of sleep, (3) fatigue, (4) reduction in daily activity, (5) decline in overall feeling, (6) depression and (7) nausea and vomiting. Maximum total score was 35 points.

Results: A comparison between cycles (with T.alpha..sub.1 and without T.alpha..sub.1) was performed. The addition of T.alpha..sub.1 to chemotherapy cycles significantly increases the quality of life scores compared with cycles without T.alpha..sub.1.

Side Effects Loss of Appetite 4.33 vs. 3.99 p = 0.0001 Loss of Sleep 4.41 vs. 4.10 p = 0.002 Fatigue 4.05 vs. 3.70 p = 0.0001 Reduction in Daily 4.12 vs. 3.84 p = 0.0001 Activity Decline in Overall 4.32 vs. 3.94 p = 0.0001 Feeling Depression 4.01 vs. 3.72 p = 0.003 Nausea and Vomiting 4.29 vs. 3.93 p = 0.001 Nausea and vomiting classified according to WHO criteria: Group n Grade 0 Gr. 1 Gr. 2 Gr. 3 Gr. 4 P value A (with T.alpha..sub.1) 54 7/55 33 13 1 0 P < 0.0005 B (Without 53 4/53 19 19 11 0 T.alpha..sub.1)

Conclusion: Adding T.alpha..sub.1 to chemotherapy significantly improves patient quality of life.

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge