中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Organic Chemistry 2006-Apr

[10]Annulene: bond shifting and conformational mechanisms for automerization.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Claire Castro
William L Karney
Colleen M McShane
Ryan P Pemberton

关键词

抽象

We report density-functional and coupled-cluster calculations on conformation change and degenerate bond shifting in [10]annulene isomers 1-5. At the CCSD(T)/cc-pVDZ//CCSD/6-31G level, conversion of the twist (1) to the heart (2) has a barrier of 10.1 kcal/mol, compared to Ea = 16.2 kcal/mol for degenerate "two-twist" bond shifting in 1. Pseudorotation in the all-cis boat isomer (3) proceeds with a negligible barrier. The naphthalene-like isomer 4 has a 3.9 kcal/mol barrier to degenerate bond shifting. The azulene-like isomer 5 is the only species for which the nature of the bond-equalized form (5-eq) depends on the method. At the CCSD(T)/cc-pVDZ//CCSD/6-31G level, 5-eq is 1.2 kcal/mol more stable than the bond-alternating form 5-alt. Conversion of 5-eq to 4 has a barrier of 12.6 kcal/mol. Despite being significantly nonplanar, both 5-eq and the transition state for bond shifting in 4 are highly aromatic based on magnetic susceptibility exaltations. On the basis of a detailed consideration of these mechanisms and barriers, we can now, with greater confidence, rule out 4 and 5 as candidates to explain the NMR spectra observed by Masamune. Our results support Masamune's original assignments for both isolated isomers.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge