中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell 2019-May

A Comprehensive Map of Intron Branchpoints and Lariat RNAs in Plants.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Xiaotuo Zhang
Yong Zhang
Taiyun Wang
Ziwei Li
Jinping Cheng
Haoran Ge
Qi Tang
Kun Chen
Li Liu
Chenyu Lu

关键词

抽象

Lariats are formed by excised introns, when the 5' splice site joins with the branchpoint (BP) during splicing. Although lariat RNAs are usually degraded by RNA debranching enzyme 1, recent findings in animals detected many lariat RNAs under physiological conditions. By contrast, the features of BPs and to what extent lariat RNAs accumulate naturally are largely unexplored in plants. Here, we analyzed 948 RNA sequencing data sets to document plant BPs and lariat RNAs on a genome-wide scale. In total, we identified 13,872, 5199, 29,582, and 13,478 BPs in Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), rice (Oryza sativa), and maize (Zea mays), respectively. Features of plant BPs are highly similar to those in yeast and human, in that BPs are adenine-preferred and flanked by uracil-enriched sequences. Intriguingly, ∼20% of introns harbor multiple BPs, and BP usage is tissue-specific. Furthermore, 10,580 lariat RNAs accumulate in wild-type Arabidopsis plants, and most of these lariat RNAs originate from longer or retroelement-depleted introns. Moreover, the expression of these lariat RNAs is accompanied by the incidence of back-splicing of parent exons. Collectively, our results provide a comprehensive map of intron BPs and lariat RNAs in four plant species and uncover a link between lariat turnover and splicing.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge