中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Natural Product Communications 2014-Jun

Accumulation and function of trigonelline in non-leguminous plants.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Hiroshi Ashihara
Shin Watanabe

关键词

抽象

As part of our studies of the occurrence, biosynthesis, function and human use of trigonelline, we looked at trigonelline-accumulating plant species and at the distribution of trigonelline in different organs of trigonelline-accumulating non-leguminous plants. There are many trigonelline-synthesizing plant species, but apart from legume seeds only a few species accumulate high concentrations of trigonelline. We have found only three species that accumulate high levels of trigonelline: Murraya paniculata (orange jessamine), Coffea arabica (coffee) and Mirabilisjalapa (four o'clock flower). Trigonelline was found in all parts of Murraya paniculata seedlings at 4-13 micromol/g fresh weight; more than 70% was distributed in the leaves. In the coffee plant, trigonelline was found in all organs, and the concentrations in the upper stems, including tips (48 micromol/g FW) and seeds (26 micromol/g FW), were higher than in other organs. In Mirabilis jalapa plants, trigonelline was found in leaves, stems, flowers, roots and seeds; the concentration varied from 0.3 to 13 micromol/g FW and was generally higher in young tissues than in mature tissues, except for seeds. Exogenously supplied nicotinamide increases the trigonelline content. The in planta role of trigonelline and the possible use oftrigonelline-accumulating plants in herbal medicine are discussed.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge