中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Photosynthesis Research 1987-Jan

Activation of NADP-malate dehydrogenase in C3 plants by reduced glutathione.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
M Vivekanandan
G E Edwards

关键词

抽象

NADP-malate dehydrogenase extracted from darkened leaves of the C3 plants pea, barley, wheat and spinach was activated by reduced glutathione, a monothiol, as well as by dithiothreitol (DTT). However, in the C4 plants maize and Flaveria trinervia, only dithiothreitol could effectively activate the enzyme. There was no activation of the maize enzyme and little or no activation of the F. trinervia enzyme by glutathione. The failure of glutathione to activate NADP-MDH in leaf extracts of maize and F. trinervia may indicate there is some difference in disulfide groups of the protein compared to the C3 plant enzyme. Both DTT and glutathione could activate NADP-malate dehydrogenase in a partially purified enzyme preparation from pea leaves with or without addition of partially purified thioredoxin. However, the required concentration of reductant was lower with addition of thioredoxin than in its absence. In extracts of C3 species and the partially purified pea enzyme the level of activation after 40 to 60 min under aerobic conditions was higher (up to twofold) with DTT than with glutathione. Under anaerobic conditions, the initial rate of activation was about twice as high with DTT as with glutathione, but the total activation after 40 to 60 min was similar. Ascorbate was totally ineffective as a reducing agent in activating NADP-MDH from C3 or C4 plants, possibly due to its more positive redox potential.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge