中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioscience, Biotechnology and Biochemistry 2010

Activation of TRPV1 and TRPA1 by black pepper components.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Yukiko Okumura
Masataka Narukawa
Yusaku Iwasaki
Aiko Ishikawa
Hisashi Matsuda
Masayuki Yoshikawa
Tatsuo Watanabe

关键词

抽象

We searched in this study for novel agonists of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in pepper, focusing attention on 19 compounds contained in black pepper. Almost all the compounds in HEK cells heterogeneously expressed TRPV1 or TRPA1, increased the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a concentration-dependent manner. Among these, piperine, isopiperine, isochavicine, piperanine, pipernonaline, dehydropipernonaline, retrofractamide C, piperolein A, and piperolein B relatively strongly activated TRPV1. The EC(50) values of these compounds for TRPV1 were 0.6-128 microM. Piperine, isopiperine, isochavicine, piperanine, piperolein A, piperolein B, and N-isobutyl-(2E,4E)-tetradeca-2,4-diamide also relatively strongly activated TRPA1, the EC(50) values of these compounds for TRPA1 were 7.8-148 microM. The Ca(2+) responses of these compounds for TRPV1 and TRPA1 were significantly suppressed by co-applying each antagonist. We identified in this study new transient receptor potential (TRP) agonists present in black pepper and found that piperine, isopiperine, isochavicine, piperanine, piperolein A, and piperolein B activated both TRPV1 and TRPA1.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge