中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Physiology 1999-Dec

Adenosine contributes to hypoxia-induced forearm vasodilation in humans.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
U A Leuenberger
K Gray
M D Herr

关键词

抽象

In humans, hypoxia leads to increased sympathetic neural outflow to skeletal muscle. However, blood flow increases in the forearm. The mechanism of hypoxia-induced vasodilation is unknown. To test whether hypoxia-induced vasodilation is cholinergically mediated or is due to local release of adenosine, normal subjects were studied before and during acute hypoxia (inspired O(2) 10.5%; approximately 20 min). In experiment I, aminophylline (50-200 microg. min(-1). 100 ml forearm tissue(-1)) was infused into the brachial artery to block adenosine receptors (n = 9). In experiment II, cholinergic vasodilation was blocked by atropine (0.4 mg over 4 min) infused into the brachial artery (n = 8). The responses of forearm blood flow (plethysmography) and forearm vascular resistance to hypoxia in the infused and opposite (control) forearms were compared. During hypoxia (arterial O(2) saturation 77 +/- 2%), minute ventilation and heart rate increased while arterial pressure remained unchanged; forearm blood flow rose by 35 +/- 6% in the control forearm but only by 5 +/- 8% in the aminophylline-treated forearm (P < 0.02). Accordingly, forearm vascular resistance decreased by 29 +/- 5% in the control forearm but only by 9 +/- 6% in the aminophylline-treated forearm (P < 0.02). Atropine did not attenuate forearm vasodilation during hypoxia. These data suggest that adenosine contributes to hypoxia-induced vasodilation, whereas cholinergic vasodilation does not play a role.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge