中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of wound care 2014-Aug

Adhesion of the ulcerative pathogen Mycobacterium ulcerans to DACC-coated dressings.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S Geroult
R O Phillips
C Demangel

关键词

抽象

OBJECTIVE

Mycobacterium ulcerans is the causative agent of Buruli ulcer disease, the third most common mycobacteriosis after tuberculosis and leprosy and an emerging public health threat in sub-Saharan Africa. The bacteria produce a diffusible cytotoxin called mycolactone, which triggers the formation of necrotic lesions in cutaneous and subcutaneous tissues. The principal aim of this study was to characterise the cell surface hydrophobicity of Mycobacterium ulcerans and determine if bacteria bind to dialkyl carbamoyl chloride (DACC)-coated dressings through hydrophobic interactions in vitro. Since mycolactone displays hydrophobic groups, a secondary aim was to compare mycolactone binding to hydrophobic and standard dressings.

METHODS

We used hydrophobic interaction chromatography to evaluate the cell surface hydrophobicity of Mycobacterium ulcerans, compared to that of other microorganisms colonising wounds. The binding of Mycobacterium ulcerans bacteria to DACC-coated and control dressings was then assessed quantitatively by measurement of microbial adenosine triphosphate (ATP), while that of mycolactone was evaluated by fluorescence spectroscopy.

RESULTS

Compared to Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, Mycobacterium ulcerans displayed the highest cell surface hydrophobicity, irrespective of the bacterial production of mycolactone. Mycobacterium ulcerans bacteria bound to DACC-coated dressings [corrected] better than untreated controls. Mycolactone did not bind stably to hydrophobic, nor standard dressings, in the conditions tested.

CONCLUSIONS

Retention of Mycobacterium ulcerans and other wound pathogens to DACC-coated dressings may help reduce the bacterial load in Buruli ulcers and thereby improve healing. Dressings efficiently capturing mycolactone may bring an additional clinical benefit, by accelerating the elimination of the toxin during the course of antibiotic treatment.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge