中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Anatomical Record 2019-Aug

Alpinumisoflavone exhibits anticancer activities in glioblastoma multiforme by suppressing glycolysis.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Xingzhi Zhao
Ting Zhang
Kewei Jiang
Heng Gao

关键词

抽象

Glioblastoma multiforme (GBM, WHO grade IV astrocytoma) has become a public health burden worldwide. Alpinumisoflavone (AIF) is a flavonoid compound isolated from Derris eriocarpa. This study aims to examine the role of AIF in GBM. Our results showed that AIF could decrease the cell viability of both T98G and U373 GBM cell lines. AIF treatment also caused cell cycle arrest at G1/G0 phase along with upregulation of p27 and downregulation of cyclin D1. AIF could significantly induce apoptosis in GBM cells. Activation of caspase-9, disruption of mitochondrial membrane potential and loss of mitochondrial cytochrome C were also observed following AIF treatment. Inhibition of glycolysis by AIF was demonstrated by reducing glucose consumption and lactate output in GBM cells. Moreover, HK2 was identified as the molecular target responsible for the anticancer activities of AIF against GBM cells. The results showed that HK2 knockdown enhanced the anticancer activities of AIF whereas ectopic HK2 expression compromised its effect. Furthermore, the antineoplastic activities of AIF in vivo were also validated in xenograft murine model. Our results showed that AIF can exhibit anticancer activities in GBM by promoting apoptosis and inhibiting glycolysis via targeting HK2. Anat Rec, 2019. © 2019 American Association for Anatomy.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge