中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2002-Sep

Anesthetic and ethanol effects on spontaneously opening glycine receptor channels.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Michael J Beckstead
Rachel Phelan
James R Trudell
Michael J Bianchini
S John Mihic

关键词

抽象

Strychnine-sensitive glycine receptors mediate inhibitory neurotransmission occurring in the brain stem and spinal cord. Alcohols, volatile anesthetics and inhaled drugs of abuse are positive allosteric modulators of glycine receptor function, normally enhancing function only in the presence of glycine. A complication in studying allosteric actions on ligand-gated ion channels is in the dissection of their effects on neurotransmitter binding from their effects on channel opening. Mutation of an aspartate residue at position 97 to arginine in the glycine receptor alpha1 subunit simulated the effects of glycine binding, producing receptors that exhibited tonic channel opening in the absence of neurotransmitter; i.e. these receptors demonstrated a dissociation of channel opening from neurotransmitter binding. In these receptors, ethanol, enflurane, chloroform, halothane, 1,1,1-trichloroethane and toluene elicited inward currents in the absence of glycine. We previously identified mutations on ligand-gated ion channels that eliminate ethanol, anesthetic and inhalant actions (such as S267I on alpha1 glycine receptors). The double mutant (D97R and S267I) receptors were both constitutively active and resistant to the enhancing effects of ethanol and enflurane. These data demonstrate that ethanol and volatile anesthetics can affect glycine receptor channel opening independently of their effects on enhancing neurotransmitter binding.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge