中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta Medica 1999-Dec

Anti-inflammatory activities of hypocretenolides from Leontodon hispidus.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
C Zidorn
V M Dirsch
P Rüngeler
S Sosa
R Della Loggia
I Merfort
H L Pahl
A M Vollmar
H Stuppner

关键词

抽象

Hypocretenolides, a small group of sesquiterpene lactones with an unusual ring structure, are constituents of a small number of species from the Lactuceae tribe (Asteraceae). Three biogenetically closely related 14-hypocretenolides from Leontodon hispidus L. were investigated for a putative anti-inflammatory activity. 14-Hydroxyhypocretenolide-beta-D-glucoside-4'-14"-hydroxyhypocr etenoate significantly exhibited in vivo anti-inflammatory activity in the croton oil-induced mouse ear edema. To obtain first information regarding the molecular targets which might be affected by this constituent, two in vitro bioassays were performed: (i) DNA binding activity of the transcription factor NF-kappa B was evaluated by electrophoretic mobility shift assay (EMSA) using TNF-alpha-activated Jurkat T cells and (ii) nitrite accumulation in cell culture supernatants of LPS-activated RAW 264.7 macrophages was determined as a parameter for inducible nitric oxide synthase (iNOS)-dependent nitric oxide release. In order to gain information about structure-activity relationships, additionally the aglycone 14-hydroxyhypocretenolide and its D-glycoside were investigated in these in vitro systems. 14-Hydroxyhypocretenolide-beta-D-glucoside-4'-14"-hydroxyhypocr etenoate as well as its aglycone exhibited activity in both test systems, whereas the D-glucoside was not or only weakly active.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge