中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2012-Oct

Anti-inflammatory activity of Mitraphylline isolated from Uncaria tomentosa bark.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
R Rojas-Duran
G González-Aspajo
C Ruiz-Martel
G Bourdy
V H Doroteo-Ortega
J Alban-Castillo
G Robert
P Auberger
E Deharo

关键词

抽象

BACKGROUND

Uncaria tomentosa (Willd. ex Roem. & Schult.) DC. (Rubiaceae) is widely used by populations living in South America to treat many ailments associated with inflammatory disorders. Mitraphylline was shown to be the major pentacyclic oxindolic alkaloid present in the bark chloroformic extract of this plant. Its activity against cytokines involved in inflammation process was tested in a murine model in vivo.

METHODS

Mice received mitraphylline once a day for 3 days at 30 mg/kg/day by oral route. Then, they were subjected to bacterial lipopolysaccharide (LPS) endotoxin (15 mg/kg) and the LPS-induced production of 16 different cytokines was determined by Elisa multiplex. Control group received dexamethasone orally at 2mg/kg/day. Toxicity on K565 cells and murine peritoneal macrophages, in vitro, at doses up to 100 μM was monitored by XTT-colorimetric assay.

CONCLUSIONS

For the first time mitraphylline was tested in vivo against a large range of cytokines that play a crucial role in inflammation. Mitraphylline inhibited around 50% of the release of interleukins 1α, 1β, 17, and TNF-α. This activity was similar to dexamethasone. It also reduced almost 40% of the production of interleukin 4 (IL-4) while the corticoid did not. Lastly it did not show any toxicity on K565 cells nor murine macrophages at doses up to 100 μM.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge