中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Orthodontics and Dentofacial Orthopedics 2015-Dec

Antibacterial orthodontic cement to combat biofilm and white spot lesions.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Xiaoying Wang
Bianhong Wang
Yanhua Wang

关键词

抽象

BACKGROUND

White spot lesions are an undesired side effect of fixed orthodontic treatment. The objective of this research was to develop an antibacterial resin-modified glass ionomer cement (RMGIC) containing nanoparticles of silver (NAg) for prevention of white spot lesions.

METHODS

NAg was incorporated into a commercial RMGIC. The NAg-enhanced cement was compared with the unaltered RMGIC and with a commercially available composite that does not release fluoride. The experimental and control products were used to bond brackets to 80 extracted maxillary first premolars. Enamel shear bond strength and the adhesive remnant index scores were determined. A dental plaque microcosm biofilm model with human saliva as the inoculum was used to investigate biofilm viability. Bacteria on the sample surface and bacteria in the culture medium away from the sample surface were tested for metabolic activity, colony-forming units, and lactic acid production.

RESULTS

Adding NAg to RMGIC and aging in water for 30 days did not adversely affect the shear bond strength compared with the commercial RMGIC control (P >0.1). The RMGIC with 0.1% NAg achieved the greatest reductions in colony-forming units, metabolic activity, and lactic acid production. The RMGIC with 0.1% NAg inhibited not only the bacteria on the surface, but also the bacteria away from the surface in the culture medium. Incorporation of NAg into RMGIC greatly reduced biofilm activity.

CONCLUSIONS

This novel RMGIC reduced biofilm formation and plaque buildup and could inhibit white spot lesions around brackets. The method of using NAg may apply in a wide range of dental adhesives, cements, sealants, and composites to inhibit biofilm and caries.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge