中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Pathogenesis 2018-Jul

Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Rajapandiyan Krishnamoorthy
Jegan Athinarayanan
Vaiyapuri Subbarayan Periasamy
Abdulraheem R Adisa
Mohammed A Al-Shuniaber
Mustafa A Gassem
Ali A Alshatwi

关键词

抽象

The appearance of drug-resistant (DR) bacteria in the community is a crucial development, and is associated with increased morbidity, mortality, healthcare costs, and antibiotic use. Natural oil nanoemulsions (NEs) have potential for antimicrobial applications. In the present study, we determined the antimicrobial activity of an NE against DR bacterial pathogens in vitro. The NE comprised Cleome viscosa essential oil, Tween 80 nonionic surfactant, and water. We found that an NE with a droplet size of 7 nm and an oil:surfactant (v/v) ratio of 1:3 was effective against methicillin-resistant Staphylococcus aureus (MRSA), DR Streptococcus pyogenes, and DR extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Fourier-transform infrared (FTIR) spectroscopy revealed that NE treatment modified the functional groups of lipids, proteins, and nucleic acids in DR bacterial cells. Scanning electron microscopy (SEM) showed damage to the cell membranes and walls of NE-treated DR bacteria. These alterations were caused by bioactive compounds with wide-spectrum enzyme-inhibiting activity in the NE, such as β-sitosterol, demecolcine, campesterol, and heneicosyl formate. The results suggest that the nanoemulsion is effective against DR bacteria, and acts by inhibiting the drug efflux mechanism of DR strains.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge