中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2008-Apr

Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Vicent Arbona
Zahed Hossain
María F López-Climent
Rosa M Pérez-Clemente
Aurelio Gómez-Cadenas

关键词

抽象

Soil flooding constitutes a seasonal factor that negatively affects plant performance and crop yields. In this work, the relationship between oxidative damage and flooding sensitivity was addressed in three citrus genotypes with different abilities to tolerate waterlogging. We examined leaf visible damage, oxidative damage in terms of malondialdehyde (MDA) concentration, leaf proline concentration, leaf and root ascorbate and glutathione contents and the antioxidant enzyme activities superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.8.1.7). No differences in the extent of oxidative damage relative to controls were found among genotypes. However, a different ability to delay the apparition of oxidative damage was associated to a higher tolerance to waterlogging. This ability was linked to an enhanced activated oxygen species' scavenging capacity in terms of an increased antioxidant enzyme activity and higher content in polar antioxidant compounds. Therefore, the existence of a direct relationship between stress sensitivity and the early accumulation of MDA is proposed. In addition, data indicate that the protective role of proline has to be considered minimal as its accumulation was inversely correlated with tolerance to the stress. The positive antioxidant response in Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) and Citrumelo CPB 4475 (Poncirus trifoliata L. Raf. x Citrus paradisi L. Macf.) might be responsible for a higher tolerance to flooding stress, whereas in Cleopatra mandarin (Citrus reshni Hort. Ex Tan.), the early accumulation of MDA seems to be associated to an impaired ability for H2O2 scavenging.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge