中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Research 2019-Aug

Antioxidant properties of Aloe vera components: a DFT theoretical evaluation.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S Nazifi
Mohammad Asgharshamsi
Mehrdad Dehkordi
Krzysztof Zborowski

关键词

抽象

Prediction of the antioxidant activity of three Aloe vera components (aloesone, aloe-emodin, and isoeleutheol) was performed based on density functional theory calculations using the B3LYP hybrid functional and the 6-311++ G** basis set. Calculation of highest occupied molecular orbital (HOMO), lowest occupied molecular orbital (LUMO), and Egap revealed that aloe-emodin has the lowest Egap value, indicating good antioxidant activity. Also in terms of electron affinity, softness, electrophilicity, and chemical potential, aloe-emodin is a potent structure with potential high radical scavenging activity. Calculation of the ionisation potential revealed that isoeleutherol likely also possesses a high degree of antiradical scavenging. To study the conjugating system of the radicals, density plots of HOMO, natural bond orbital analyses, and spin density plots were used. According to calculations, the isoeleutherol radical is more delocalised and the most stable radical. Calculated proton affinity values revealed that the most probable antioxidant mechanism is sequential proton loss-electron transfer. Our results were compared with available experimental data. Published experimental data were found to correlate well with our theoretical predictions. These results support the usefulness of theoretical calculations not only for identifying potentially useful structures of studied compounds but also for predicting their relative activity.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge