中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2007-Dec

Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jay E Mellon
Peter J Cotty
Michael K Dowd

关键词

抽象

Aspergillus flavus is a fungus that principally obtains resources for growth in a saprophytic mode. Yet, it also possesses the characteristics of an opportunistic pathogen with a wide, non-specific host range (plants, animals, and insects). It has attained a high level of agricultural significance due to production of the carcinogen aflatoxin, which significantly reduces the value of contaminated crops. To access a large variety of nutrient substrates and penetrate host tissues, A. flavus possesses the capacity to produce numerous extracellular hydrolases. Most work on A. flavus hydrolases has focused on the serine and metalloproteinases, pectinase P2c, and amylase. Many hydrolases are presumed to function in polymer degradation and nutrient capture, but the regulation of hydrolase secretion is complex and substrate dependent. Proteinases are employed not only to help access protein substrates, such as elastin that is found in mammals and insects, but may also play roles in fungal defense and virulence. Secretion of the endopolygalacturonase P2c is strongly correlated with isolate virulence (against plants) and maceration of cotton boll tissues. In some hosts, secretion of alpha-amylase is critical for starch digestion and may play a critical role in induction of aflatoxin biosynthesis. Despite a significant body of work, much remains to be learned about hydrolase production and utilization by A. flavus. This information may be critical for the formulation of successful strategies to control aflatoxin contamination in affected commodities.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge