中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Revue des Maladies Respiratoires 1998-Feb

[Asthma and household chemical pollutants (with the exception of tobacco)].

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
P Krieger
F de Blay
G Pauli
M C Kopferschmitt

关键词

抽象

The relationship between allergens in a domestic environment and asthma has been extensively studied and it is only recently that studies have suggested the possibility of the role of chemical pollutants in the internal environment in the genesis of asthma. The pollutants studied are oxides of nitrogen (nitrogen dioxide NO2), volatile organic components (COV), formaldehyde, ozone (O3) and sulphur dioxide (SO2). The level of nitrogen dioxide in the interior of houses may be greater than those met outside. Normal values are 400 mcg per metre3 per hour and 150 mcg per metre3 in twenty four hours. In asthmatics challenge test to nitrogen dioxide and epidemiological studies suggest that internal nitrogen dioxide is capable of provoking asthmatic crises either by a direct pollutant effect or by potentialising the allergenic crises either by a direct pollutant effect or by potentialising the allergenic response of the bronchi. COV and formaldehyde are liberated by urea formaldehyde foams and by chipboard furniture. The levels of COV and formaldehyde inside a house may be up to 10 times higher than those outside. COV and formaldehyde perhaps would have an effect on the bronchi in asthmatics at significant levels which are rarely found in the domestic environment. Ozone is an external pollutant. However, from 5-80% of the external concentrations may be found inside some locations. Thus, in certain conditions which are relatively rare, the interior concentrations of dwelling places may attain levels which are capable of inducing, in healthy subjects who are sensitive to ozone, a drop in the FEV1. As regards asthmatics, only experimental work has been able to show any bronchospastic effect of ozone, either by a direct effect on the bronchi or by the potentiation of a bronchial response to allergens. It would be convenient to perform some epidemiological studies to determine if there is a relationship between exposure to ozone internally and to bronchial changes. The concentrations of SO2 inside houses increases when coal is burnt. The levels provoking a bronchial reaction are much greater than those found inside houses. The data and the literature which is mostly recent seems to stress the role of NO2 ozone and SO2 as a factor which might favour asthmatic crises induced by allergens in atopic subjects. However, other studies will be necessary to confirm the initial data.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge