中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in Experimental Medicine and Biology 2000

Augmentation of calcium current by hypoxia in carotid body glomus cells.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
B A Summers
J L Overholt
N R Prabhakar

关键词

抽象

Several lines of evidence indicate that transduction of the hypoxic stimulus at the carotid body involves an increase in cytosolic Ca2+ ([Ca2+]i) via activation of voltage-gated Ca2+ channels in the glomus cells. However, reported responses to hypoxia include either no effect on or inhibition of Ca2+ current in glomus cells. The apparent discrepancy between the effects of hypoxia on [Ca2+]i and Ca2+ channel activity prompted us to re-examine the effects of low oxygen on Ca2+ currents in glomus cells. Experiments were performed on freshly dissociated glomus cells from rabbit carotid bodies. Ca2+ channel activity was monitored using the whole-cell configuration of the patch clamp technique with Ba2+ as the charge carrier. Hypoxia (pO2 = 40 mmHg) augmented the Ca2+ current by 24% (at 0 mV). This augmentation was seen in a CO2/HCO3- but not in a HEPES buffered extracellular solution. However, when the extracellular pH (pHo) of a HEPES buffered solution is lowered from 7.4 to 7.0, then the Ca2+ current in glomus cells is augmented by hypoxia by 20%. Nisoldipine, an L-type Ca2+ channel blocker (2 microM), prevented augmentation of the Ca2+ current by hypoxia. On the other hand, an N- and P-type Ca2+ channel blocker (2 microM omega-conotoxin MVIIC) did not prevent the augmentation of the Ca2+ current by hypoxia. Protein kinase C (PKC) inhibitors, staurosporine (100 nM) and bisindolylmaleimide (2 microM), prevented augmentation by hypoxia. Okadaic acid (100 nM), an inhibitor of serine/threonine phosphatases also prevented augmentation of Ca2+ current by hypoxia; whereas, norokadaone, an inactive analog of okadaic acid, had no effect. These results suggest that hypoxia augments Ca2+ current through L-type Ca2+ channels via a PKC and/or phosphatase-sensitive pathways.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge