中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2002-Mar

Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Michael Reichelt
Paul D Brown
Bernd Schneider
Neil J Oldham
Einar Stauber
Jim Tokuhisa
Daniel J Kliebenstein
Thomas Mitchell-Olds
Jonathan Gershenzon

关键词

抽象

The spectacular recent progress in Arabidopsis thaliana molecular genetics furnishes outstanding tools for studying the formation and function of all metabolites in this cruciferous species. One of the major groups of secondary metabolites in A. thaliana is the glucosinolates. These hydrophilic, sulfur-rich glycosides appear to serve as defenses against some generalist herbivores and pathogens, and as feeding and oviposition stimulants to specialist herbivores. To help study their biosynthesis and role in plant-insect interactions, we wanted to determine the complete glucosinolate content of A. thaliana. In previous studies, 24 glucosinolates had been identified from ecotype Columbia. We reinvestigated Columbia as well as additional ecotypes and mutant lines, and identified 12 further glucosinolates, including five novel compounds. Structures were elucidated by MS and NMR spectroscopy of their desulfated derivatives, and by enzymatic cleavage of the attached ester moieties. Four of the novel glucosinolates are benzoate esters isolated from the seeds. In all but one of these compounds, esterification is on the glucose moiety rather than the side chain, a very unusual feature for glucosinolates. Among additional glucosinolates identified were the first non-chain elongated, methionine-derived glucosinolate from A. thaliana and the first compounds that appear to be derived from leucine.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge