中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Gerontology 2019-Oct

Beta-lapachone attenuates immobilization-induced skeletal muscle atrophy in mice.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Soyoung Park
Min-Gyeong Shin
Jae-Ryong Kim
So-Young Park

关键词

抽象

Skeletal muscle atrophy reduces quality of life and increases morbidity and mortality in patients with chronic conditions. Oxidative stress is a key factor contributing to skeletal muscle atrophy by altering both protein synthesis and protein degradation pathways. Beta-lapachone (Beta-L) is known to act as a pro-oxidant in cancer cells but suppresses oxidative stress in normal cells and tissues. In the present study, we examined whether Beta-L (100 mg/kg body weight) prevents immobilization-induced skeletal muscle atrophy in male C57BL/6N mice. Skeletal muscle atrophy was induced by immobilization of left hindlimbs for two weeks, and right hindlimbs were used as controls. The muscle weights of gastrocnemius (0.132 ± 0.003 g vs. 0.115 ± 0.003 g in Beta-L and SLS, respectively, p < 0.01) and tibialis anterior (0.043 ± 0.001 vs. 0.027 ± 0.002 in Beta-L and SLS, respectively, p < 0.001) were significantly heavier in Beta-L-treated mice than that in SLS-treated mice in immobilization group, which was accompanied by improved skeletal muscle function as tested by treadmill exhaustion and grip strength test. Immobilization increased H2O2 levels, while Beta-L treatment normalized such levels (1.6 ± 0.16 μM vs. 2.7 ± 0.44 μM in Beta-L and vehicle, respectively, p < 0.05). Oxidative stress makers were also normalized by Beta-L treatment. Protein synthesis signaling pathways were unaltered in the case of both immobilization and Beta-L treatment. However, protein catabolic, ubiquitin-proteasomal, and autophagy-lysosomal pathways were stimulated by immobilization and were normalized by Beta-L treatment. Upregulation of transforming growth factor β and Smad 2/3 after immobilization was significantly diminished by Beta-L treatment. These results suggest that Beta-L attenuates the loss of muscle weight and function induced by immobilization through suppression of oxidative stress.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge