中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2019-Aug

Bioactive Constituents from the Roots of Eurycoma longifolia.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jingya Ruan
Zheng Li
Ying Zhang
Yue Chen
Mengyang Liu
Lifeng Han
Yi Zhang
Tao Wang

关键词

抽象

Four new phenolic components, eurylophenolosides A (1) and B (2), eurylolignanosides A (3) and B (4), along with twelve known compounds were isolated from the roots of Eurycoma longifolia Jack. The structure of these components was elucidated by using various spectral techniques and chemical reactions. Among the known isolates, syringaldehyde (12), 3-chloro-4-hydroxybenzoic acid (13), 3-chloro-4-hydroxyl benzoic acid-4-O-β-d-glucopyranoside (14), and isotachioside (15) were isolated from the Eurycoma genus for the first time. Further, the NMR data of 14 was reported here firstly. Meanwhile, the nitric oxide (NO) inhibitory activities of all compounds were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 cells at 40 μM. As results, piscidinol A (6), 24-epi-piscidinol A (7), bourjotinolone A (10), and scopoletin (16) were found to play important role in suppressing NO levels without cytotoxicity. Furthermore, the Western blot method was used to investigate the mechanism of compounds 6, 7, 10, and 16 by analysing the level of inflammation related proteins, such as inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in LPS-stimulated RAW264.7 cells. Consequently, compounds 6, 7, 10, and 16 were found to significantly inhibit LPS-induced protein expression of IL-6, NF-κB and iNOS in NF-κB signaling pathway. Moreover, it was found that the protein expression inhibitory effects of 6, 7, and 16 exhibited in a dose-dependent manner. The mechanism may be related to the inhibition of the iNOS expressions through suppressing the IL-6-induced NF-κB pathway.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge