中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Macromolecular Bioscience 2006-Dec

Biodegradable injectable in situ depot-forming drug delivery systems.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Deepak Chitkara
Ariella Shikanov
Neeraj Kumar
Abraham J Domb

关键词

抽象

The scope of drug-delivery systems has expanded significantly in recent years providing new ways to deliver life saving therapeutics to patients. The development of new injectable drug-delivery systems has provided new vistas and opened up unexplored horizons in the field of science, particularly in controlled drug delivery since these systems possess unique advantages over traditional ones, which include ease of application, and localized and prolonged drug delivery. In the past few years, an increasing number of such systems has been reported in the literature for various biomedical applications, including drug delivery, cell encapsulation, and tissue repair. These are injectable fluids that can be introduced into the body in a minimally invasive manner prior to solidifying or gelling within the desired site. For this purpose both natural (chitosan, alginates) as well as synthetic polymers (PEGylated polyesters, ricinoleic acid-based polymers) have been utilized. These systems have been explored widely for the delivery of various therapeutic agents ranging for anti-neoplastic agents like paclitaxel to proteins and peptides such as insulin, almost covering every segment of the pharmaceutical field. This manuscript focuses on the recent advancements in the area of in situ forming biodegradable polymeric drug-delivery systems.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge