中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Biomaterialia 2009-Mar

Block copolymer nanotemplating of tobacco mosaic and tobacco necrosis viruses.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Arthur V Cresce
James N Culver
William E Bentley
Peter Kofinas

关键词

抽象

This paper examines the interaction between a block copolymer and a virus. A poly(styrene-b-4-vinylpyridine) block copolymer was loaded with nickel, and cast from a selective solvent mixture to form a cylindrical microstructure (PS/P4VP-Ni). The nickel ions were confined within the P4VP block of the copolymer. The binding of tobacco mosaic virus (TMV) and tobacco necrosis virus on microphase-separated PS/P4VP-Ni was examined. A staining technique was developed to simultaneously visualize virus and block copolymer structure by transmission electron microscopy. Electron microscopy revealed virus particles associated with block copolymer microphase-separated domains, even after extensive washes with Tween. In contrast, virus associated with PS/P4VP block copolymers lacking Ni were readily removed by Tween. The cylinder long axis of the microstructure was oriented using a hot press and a cooled channel die for quenching, resulting in PS/P4VP cylinders that had a strong anisotropic directional preference. When exposed to flowing solutions of TMV, the PS/P4VP-Ni surface exhibited an ability to retain TMV in a partially aligned state, when the direction of flow coincided with the long axis of the PS/P4VP-Ni cylinders. These results suggest that Coulombic interactions provide a robust means for the binding of virus particles to block copolymer surfaces.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge