中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of ophthalmology (Chicago, Ill. : 1960) 2002-Apr

Butterfly-shaped pattern dystrophy: a genetic, clinical, and histopathological report.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Kang Zhang
Daniel C Garibaldi
Yang Li
W Richard Green
Donald J Zack

关键词

抽象

OBJECTIVE

To identify the disease-causing mutation in a large family segregating dominantly inherited butterfly-shaped pattern dystrophy (BPD) and to describe the microscopic pathological changes observed in a member of this family.

METHODS

Seventeen individuals at risk for dominantly inherited BPD in a family were examined and blood samples obtained. Linkage analysis and mutation screening of the human retinal degeneration slow (RDS)/peripherin locus were performed. Light and electron microscopic examinations were performed on 1 postmortem eye of 1 affected individual.

RESULTS

Four individuals demonstrated macular degenerative changes with diminished visual acuity, and 3 others exhibited early signs of atrophy without visual deficits. Microscopic examination of the left eye of 1 patient revealed an area of total loss of the retinal pigment epithelium (RPE) and photoreceptor cell layer with intact choriocapillaris and lipofuscin-containing cells in the subretinal space. Outside the area of RPE atrophy, the RPE was greatly distended by lipofuscin. The disease locus in this family was mapped to 6p21.2, the region of the RDS/peripherin gene. Further analysis identified a G-->A change at nucleotide position 637 of RDS/peripherin, predicting a novel Cys213Tyr substitution in all affected members of the family.

CONCLUSIONS

This study describes a new RDS/peripherin mutation for BPD and provides the first combined genetic-pathological study of this condition, to our knowledge.

CONCLUSIONS

Accumulation of lipofuscin in RPE is a prominent feature of several retinal disorders, including age-related macular degeneration. Further elucidation of the cellular and molecular mechanism of BPD may provide insight into pathogenesis and lead to novel treatment approaches for this and other macular degenerations.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge