中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacological Reports 2015-Oct

Carbamazepine aggravates absence seizures in two dedicated mouse models.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Nuno Marques Pires
Maria João Bonifácio
Patrício Soares-da-Silva

关键词

抽象

BACKGROUND

The aim of this study was to evaluate the effect of carbamazepine (CBZ) upon chemically induced absence seizures and in a genetic absence seizures model in the mouse.

METHODS

The γ-butyrolactone (GBL)-induced acute absence seizures and the stargazer spontaneous absence seizures mice models were used to characterize the aggravation of absence seizures induced by oral CBZ treatment. The effect of CBZ upon GABA inward-currents in Ltk cells expressing human recombinant α1β2γ2, α2β2γ2, α3β2γ2 and α5β2γ2 GABAA receptors was evaluated by means of patch clamp.

RESULTS

GBL administration induced motor impairment in NMRI mice. High dose CBZ (25mg/kg body weight) had no effect on motor performance but exacerbated the behavioral incoordination observed for GBL. Also, coadministration of a high dose CBZ and GBL impaired spontaneous locomotion. Moreover, CBZ was investigated after oral administration to evaluate the potential to aggravate GBL-induced acute spike-and-wave discharges (SWD) in the electroencephalogram. High dose CBZ significantly aggravated SWD induced by GBL. Likewise, in the stargazer mouse model of genetic spontaneous absence seizures, CBZ significantly aggravated SWD frequency and duration. Pre-treatment with the T-type Ca(2+) channel blocker ethosuximide (200mg/kg body weight) prevented the CBZ aggravation of SWD induced by GBL and in the stargazer mouse. CBZ increased in a concentration dependent manner sub-maximal α1β2γ2 and α3β2γ2 GABA currents.

CONCLUSIONS

CBZ aggravates absence seizures as assessed in two dedicated mouse models of absence seizures. Facilitation of sub-maximal α1β2γ2, and α3β2γ2 GABA currents by CBZ may play a role in CBZ-induced GABA-mediated aggravation of absence seizures.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge