中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1992-Oct

Carbohydrate metabolism during postharvest ripening in kiwifruit.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
E Macrae
W P Quick
C Benker
M Stitt

关键词

抽象

Mature fruit (kiwifruit) of Actinidia deliciosa var. deliciosa (A. Chev.), (C.F.) Liang and Ferguson cv. Haywood (Chinese gooseberry) were harvested and allowed to ripen in the dark at 20° C. Changes were recorded in metabolites, starch and sugars, adenine nucleotides, respiration, and sucrose and glycolytic enzymes during the initiation of starch degradation, net starch-to-sucrose conversion and the respiratory climacteric. The conversion of starch to sucrose was not accompanied by a consistent increase in hexose-phosphates, and UDP-glucose declined. The activity of sucrose phosphate synthase (SPS) measured with saturating substrate rose soon after harvesting and long before net sucrose synthesis commenced. The onset of sugar accumulation correlated with an increase in SPS activity measured with limiting substrates. Throughout ripening, until sucrose accumulation ceased, feeding [(14)C] glucose led to labelling of sucrose and fructose, providing evidence for a cycle of sucrose synthesis and degradation. It is suggested that activation of SPS, amplified by futile cycles, may regulate the conversion of starch to sugars. The respiratory climacteric was delayed, compared with net starchsugar interconversion, and was accompanied by a general decline of pyruvate and all the glycolytic intermediates except fructose-1,6-bisphosphate. The ATP/ ADP ratio was maintained or even increased. It is argued that the respiratory climacteric cannot be simply a consequence of increased availability of respiratory substrate during starch-sugar conversion, nor can it result from an increased demand for ATP during this process.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge