中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Neurobiology 2015

Carnosine exerts neuroprotective effect against 6-hydroxydopamine toxicity in hemiparkinsonian rat.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Siamak Afshin-Majd
Mohsen Khalili
Mehrdad Roghani
Narges Mehranmehr
Tourandokht Baluchnejadmojarad

关键词

抽象

Parkinson's disease (PD) is the second most common disorder of the central nervous system due to the degeneration of mesencephalic dopaminergic neurons. Current treatments for PD have a symptomatic relief strategy with no prevention of disease progression. Due to the neuroprotective and antiapoptotic potential of the natural dipeptide carnosine, this study was conducted to assess its beneficial effect in 6-hydroxydopamine (6-OHDA)-induced model of PD in rat. Unilateral intrastriatal 6-OHDA-lesioned rats received i.p. carnosine at a dose of 250 mg/kg twice at an interval of 24 h, which started presurgery. Apomorphine caused contralateral rotations, a significant reduction in the number of Nissl-stained neurons on the left side of the substantia nigra, and increased apoptosis was observed with enhanced oxidative stress burden in 6-OHDA-lesioned rats. Carnosine pretreatment significantly reduced rotations, attenuated apoptosis, and restored malondialdehyde and nitrite content and catalase activity with no significant effect on reduced glutathione (GSH). These results indicate that prelesion administration of carnosine could exert neuroprotection against 6-OHDA toxicity, and this may be of benefit in patients with early PD.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge