中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1994-Feb

Cell-Wall Autohydrolysis in Isolated Endosperms of Lettuce (Lactuca sativa L.).

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S. Dutta
K. J. Bradford
D. J. Nevins

关键词

抽象

Cell walls prepared from the endosperm tissue of hydrated lettuce (Lactuca sativa L.) seeds undergo autohydrolysis. Release of carbohydrates is most rapid (0.4-0.6 [mu]g per endosperm) within the 1st h of incubation in buffer, but substantial autolysis is sustained for at least 10 h. Autolysis is temperature sensitive, and the optimum rate occurs at pH 5. The rate of autolysis increases markedly in the period just prior to radicle emergence. The cell-wall polysaccharide composition in micropylar and lateral endosperm regions differs significantly; the micropylar walls are rich in arabinose and glucose with substantially lower amounts of mannose. Although walls prepared from both micropylar and lateral regions undergo autolysis, micropylar walls release carbohydrates at a higher rate than lateral walls. Autolysis products elute as large polymers when subjected to size-exclusion chromatography, suggesting that endo-enzyme activity is responsible for release of fragments containing arabinose, galactose, mannose, and uronic acids. Arabinose, galactose, mannose, and glucose are also released as monomers. As a function of time, the ratio of polymers to monomers decreases, indicating that exo-enzyme activity is also present. Thermoinhibition or treatment with abscisic acid suppresses germination and reduces the rates of autolysis of walls isolated from the endosperm by about 25%. Treatments that alleviate thermoinhibition (kinetin and gibberellic acid) increase the rates of autolysis by 20 to 30% when compared to thermoinhibited controls.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge