中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Record 2001

Chemistry and biology of phototropism-regulating substances in higher plants.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S Yamamura
K Hasegawa

关键词

抽象

Most people are familiar with the sight of a young seedling bending towards a window or the brightest source of light to which it is exposed. This directional growth response is known as phototropism, which is caused by a lateral growth-promoting auxin in the bending organ (Cholodny-Went theory, cited in high school textbook). Recently, however, Bruinsma et al., Weiler et al., and Hasegawa et al. independently found that the shaded half did not contain more auxin than the illuminated one. Instead it was found that the even distribution of auxin was accompanied by a lateral gradient of growth inhibiting substances during phototropic curvature (Bruinsma-Hasegawa theory). We have isolated some photo-induced growth inhibitory substances related to phototropism, benzoxazolinones from light-grown maize shoots (Zea mays L.), raphanusanins from radish hypocotyl (Raphanus sativus var. hortensis f. gigantissimus M.), indolyacetonitrile from light-grown shoots (Brassica oleacea L.), 8-epixanthatin from sunflower hypocotyl (Helianthus annus L.), and quite recently uridine from oat coleoptile (Avena sativa L.). Chemical analyses have shown phototropic stimulations to cause curvature by inducing a local unequal distribution of growth-inhibiting substances that antagonize auxin in its cell-elongating activity. Finally, a model is presented for further studies on phototropism.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge