中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biopolymers 2010

Circular proteins and mechanisms of cyclization.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Brendon F Conlan
Amanda D Gillon
David J Craik
Marilyn A Anderson

关键词

抽象

Cyclization via head-to-tail linkage of the termini of a peptide chain occurs in only a small percentage of proteins, but engenders the resultant cyclic proteins with exceptional stability. The mechanisms involved are poorly understood and this review attempts to summarize what is known of the events that lead to cyclization. Cyclic proteins are found in both prokaryotic and eukaryotic species. The prokaryotic circular proteins include the bacteriocins and pilins. The eukaryotic circular proteins in mammals include the theta defensins, found in rhesus macaques, and the retrocyclins. Two types of cyclic proteins have been found in plants, the sunflower trypsin inhibitor and the larger, more prolific, group known as cyclotides. The cyclotides from Oldenlandia affinis, the plant in which these cyclotides were first discovered, are processed by an asparaginyl endopeptidase which is a cysteine protease. Cysteine proteases are commonly associated with transpeptidation reactions, which, for suitable substrates can lead to cyclization events. These proteases cleave an amide bond and form an acyl enzyme intermediate before nucleophilic attack by the amine group of the N-terminal residue to form a peptide bond, resulting in a cyclic peptide.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge