中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology 2001-Jan

[Cloning and characterization of CMO gene from Atriplex hortensis].

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Y G Shen
B X Du
J S Zhang
S Y Chen

关键词

抽象

Glycine betaine is a widespread osmopretectant existed in many organisms. In higher plant, glycine betaine is synthesized via a two-sep oxidation reaction: choline-->betaine aldehyde-->glycine betaine. The first step, also the speed-limiting step, is catalyzed by choline monooxygenase(CMO). Choosing halophyte Atriplex hortensis as material, we constructed a salt stress-induced cDNA library, and isolated a 1.77 kb length cDNA clone with spinach CMO cDNA as probe. The sequencing result showed a complete Open Reading Frame encoding a 438-amino-acid polypeptide which was 81% and 72% identified to CMO sequences of spinach and sugar beet in amino acid homology respectively. Compared with the CMO from spinach and sugar beet, the AhCMO had one conserved Rieske-Type [2Fe-2S] cluster-binding region and one conserved mononuclear Fe-binding motif. The expression pattern of AhCMO under salt stress was also stuied, the transcriptional level of AhCMO raised about three folds after the plant was treated with brine for 4 days. The AhCMO was then transfered into tobacco(Nictiana tabacum var. Xanthi) with 35S promotor and seven transgenic plants were certified by northern blot, these plants displayed some salt- and drought-stress tolerance when grew well on MS medium contained 1.2% NaCl or 10% PEG while the control was stagnated under the same cndition.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge