中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 1987-Jul

Comparative cytotoxicity of phenols in vitro.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S Passi
M Picardo
M Nazzaro-Porro

关键词

抽象

Two melanotic human melanoma cell lines, IRE 1 and IRE 2, and the lymphoma- and leukaemia-derived cell lines Raji and K 562, were exposed to different concentrations (from 5 X 10(-3) M to 10(-5) M) of phenols, both substrates (s) and non-substrates (ns) of tyrosinase, in the presence or absence of the oxygen-radical-scavenger enzymes superoxide dismutase, catalase and peroxidase. Monophenols were tyrosine (s), 4-hydroxyanisole (s) and butylated hydroxyanisole (ns); diphenols were L-3,4-dihydroxyphenylalanine (s), dopamine (3,4-dihydroxyphenethylamine) (s), terbutylcatechol (s), hydroquinone (s) and resorcinol (ns); triphenols were 6-hydroxydopa (3,4,6-trihydroxyphenylalanine) (s) and methyl gallate (s). Triphenols and o- and p-diphenols underwent complete oxidation in culture medium within 24 h of incubation and were significantly more toxic than monophenols and the m-diphenol resorcinol, which, under the same cultural conditions, were much more stable. No significant differences in percentage survival were found among the different cell lines for each drug tested. The major component of toxicity up to 24 h of di- and tri-phenols is due to toxic oxygen species acting outside the cells and not to cellular uptake of these phenols as such. In fact the addition of oxygen-radical-scavenger enzymes significantly (P less than 0.01) decreased the adverse effect of these drugs on all cell lines. The lower toxicity of monophenols and resorcinol as compared with that of di- and tri-phenols is due, in our opinion, to the fact that they are less oxidized under the conditions existing in the culture medium, and therefore do not produce sufficient levels of oxygen radicals. For these compounds, a primary intracellular action has to be taken into account to explain their cytotoxicity.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge