中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2007-Apr

Composition of the cuticle of developing sweet cherry fruit.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Stefanie Peschel
Rochus Franke
Lukas Schreiber
Moritz Knoche

关键词

抽象

The composition of wax and cutin from developing sweet cherry (Prunus avium) fruit was studied by GC-MS between 22 and 85 days after full bloom (DAFB). In this and our previous study, fruit mass and surface area increased in a sigmoidal pattern with time, but mass of the cuticular membrane (CM) per unit fruit surface area decreased. On a whole fruit basis, mass of CM increased up to 36 DAFB and remained constant thereafter. At maturity, triterpenes, alkanes and alcohols accounted for 75.6%, 19.1% and 1.2% of total wax, respectively. The most abundant constituents were the triterpenes ursolic (60.0%) and oleanolic acid (7.5%), the alkanes nonacosane (13.0%) and heptacosane (3.0%), and the secondary alcohol nonacosan-10-ol (1.1%). In developing fruit triterpenes per unit area decreased, but alkanes and alcohols remained essentially constant. The cutin fraction of mature fruit consisted of mostly C16 (69.5%) and, to a lower extent, C18 monomers (19.4%) comprising alkanoic, omega-hydroxyacids, alpha,omega-dicarboxylic and midchain hydroxylated acids. The most abundant constituents were 9(10),16-dihydroxy-hexadecanoic acid (53.6%) and 9,10,18-trihydroxy-octadecanoic acid (7.8%). Amounts of C16 and C18 monomers per unit area decreased in developing fruit, but remained approximately constant on a whole fruit basis. Within both classes of monomers, opposing changes occurred. Amounts of hexadecandioic, 16-hydroxy-hexadecanoic, 9(10)-hydroxy-hexadecane-1,16-dioic and 9,10-epoxy-octadecane-1,18-dioic acids increased, but 9,10,18-trihydroxy-octadecanoic and 9,10,18-trihydroxy-octadecenoic acids decreased. There were no qualitative and minor quantitative differences in wax and cutin composition between cultivars at maturity. Our data indicate that deposition of some constituents of wax and cutin ceased during early fruit development.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge