中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2018-Dec

Comprehensive hippocampal metabolite responses to PM2.5 in young mice.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Xia Ning
Ben Li
Tingting Ku
Lin Guo
Guangke Li
Nan Sang

关键词

抽象

Fine particulate matter (PM2.5) exposure alters brain development, clinical cognition and behavior in childhood. Previous studies of this subject have mainly been epidemiological investigations or analyses of gene and protein levels; however, gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling, which will help clarify the molecular mechanisms of susceptibility in PM2.5-induced neurotoxicity, is lacking. In the present study, C57BL/6 mice at different ages (4 weeks, 4 months and 10 months) received oropharyngeal aspiration of PM2.5 (3 mg/kg) every other day for 4 weeks. The Morris water maze showed that PM2.5 exposure caused deterioration of spatial learning and memory in young (4 week old) mice. In addition, the levels of several metabolites belonging to different metabolite classes were significantly changed by PM2.5 exposure in 4-week-old mice. Based on metabolic pathway analysis, we speculated that the decline in spatial learning and memory due to PM2.5 exposure may be directly or indirectly associated with hippocampal region-specific metabolic alterations involving energy metabolism (citric acid, succinic acid, malic acid, maltose and creatinine); cholesterol metabolism (desmosterol, lanosterol and campesterol); arachidonic acid metabolism (methyl arachidonic acid, nonanoic acid and linoleic acid); inositol phosphate metabolism (myo-inositol, myo-inositol-1-phosphate and methyl-phosphate) and aspartic acid metabolism (aspartic acid, asparagine and homoserine).

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge