中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Modeling 2014-Nov

Computational study of antimalarial pyrazole alkaloids from Newbouldia laevis.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Liliana Mammino
Mireille K Bilonda

关键词

抽象

Six pyrazole alkaloids of natural origin (isolated from Newbouldia laevis in DR Congo) that exhibit antimalarial activity-namely withasomnine, newbouldine, and their para-hydroxy and -methoxy derivatives-were investigated theoretically. The nitro derivatives of withasomnine and para-hydroxywithasomnine, which show enhanced antimalarial activity, were also studied in this manner. A thorough conformational study was performed in vacuo and in three solvents (chloroform, acetonitrile, and water) at different levels of theory (HF, DFT/B3LYP, and MP2) using different basis sets. Adducts with explicit water molecules were calculated at the HF level. Due to the rigidity of the pyrazole system and the benzene ring, the only factor that influences the energies of withasomnine and newbouldine is the relative orientation of the two ring systems; two orientations are equally preferred. The para-hydroxy and -methoxy derivatives show a preference for a planar orientation of the OH and OC bonds. The main stabilizing influence on the nitro derivative of para-hydroxywithasomnine is the intramolecular hydrogen bond between the two consecutive functional groups. The calculated adducts show the preferred arrangements of water molecules in the vicinity of the N atoms of the pyrazole system and, for the derivatives, also in the vicinity of the substituents on the benzene ring.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge