中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemistry 1994-Dec

Contribution of the surface free energy perturbation to protein-solvent interactions.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Y Kita
T Arakawa
T Y Lin
S N Timasheff

关键词

抽象

Surface tension measurements were carried out at 20 degrees C by a capillary drop-weight method on aqueous solutions of sodium glutamate (NaGlu), lysine hydrochloride (LysHCl), potassium aspartate (KAsp), arginine hydrochloride (ArgHCl), lysylglutamate (LysGlu), argininylglutamate (ArgGlu), guanidinium sulfate, trehalose, trimethylamine N-oxide (TMAO), dimethyl sulfoxide, 2-methyl-2,4-pentanediol (hexylene glycol), and poly(ethylene glycol)s of molecular weights 200, 400, 600, and 1000. All of the salts and the sugar increased the surface tension of water, while the last four compounds decreased it, with 2-methyl-2,4-pentanediol lowering it most effectively and TMAO being the least effective. The preferential hydration of bovine serum albumin (BSA) and lysozyme was measured in KAsp, ArgHCl, LysGlu, and ArgGlu. The high values of preferential hydration found in all cases, except for BSA in ArgHCl, suggest that they should stabilize protein structure, as had been found for lysine hydrochloride and monosodium glutamate [Arakawa, T., & Timasheff, S. N. (1984) J. Biol. Chem. 259, 4979-4986]. A correlation was found for both BSA and lysozyme in KAsp, NaGlu, LysHCl, ArgGlu, and LysGlu between the surface tension effect and the observed preferential interactions, indicating that the change in the surface free energy of the protein-containing cavity due to the surface tension increase for water by these amino acid salts contributes dominantly to the observed increase in the chemical potential of the protein by their addition. The lack of a correlation observed for BSA, but not lysozyme, in ArgHCl at low concentrations where preferential binding is close to zero suggests, however, that the surface tension effect is not the sole factor involved in the protein-solvent interactions in these amino acid salts. Binding of ArgHCl to BSA, probably through hydrogen bonds between the Arg guanidinium group and peptide bonds, was proposed to occur, the affinity of Arg+ being reduced by electrostatic repulsion when proteins carry a net positive charge, such as is the case with lysozyme. Since the four organic solvent additives also lead to protein preferential hydration, no correlation exists between their preferential interactions and the surface free energy perturbation. Therefore, in their case, the preferential hydration must be ascribed to other factors that overcome the preferential binding expected from the Gibbs adsorption isotherm. The surface tension results, however, are consistent with the binding of the organic solvents to proteins through hydrophobic interactions, explaining, at least in part, the observed concentration dependence of the interactions.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge