中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Waste Management 2016-Mar

Decontamination of CCA-treated eucalyptus wood waste by acid leaching.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Suzana Frighetto Ferrarini
Heldiane Souza Dos Santos
Luciana Gampert Miranda
Carla Maria Nunes Azevedo
Sandra Maria Maia
Marçal Pires

关键词

抽象

Preservatives such as chromated copper arsenate (CCA) are used to increase the resistance of wood to deterioration. The components of CCA are highly toxic, resulting in growing concern over the disposal of the waste generated. The aim of this study was to investigate the removal of Cu, Cr and As present in CCA-treated eucalyptus wood from utility poles removed from service in southern Brazil, in order to render them non-hazardous waste. The removal was carried out by acid leaching in bench-scale and applying optimal extractor concentration, total solid content, reactor volume, temperature and reaction time obtained by factorial experiments. The best working conditions were achieved using three extraction steps with 0.1 mol L(-1) H2SO4 at 75°C for 2h each (total solid content of 15%), and 3 additional 1h-long washing steps using water at ambient temperature. Under these conditions, removal of 97%, 85% and 98% were obtained for Cu, Cr and As, respectively, rendering the decontaminated wood non-hazardous waste. The wastewater produced by extraction showed acid pH, high organic loading as well as high concentrations of the elements, needing prior treatment to be discarded. However, rinsing water can be recycled in the extraction process without compromising its efficiency. The acid extraction is a promising alternative for CCA removal from eucalyptus wood waste in industrial scale.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge