中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physical Chemistry A 2006-Nov

Degenerate electron exchange reaction of n-alkane radical cations in solution.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Vsevolod I Borovkov
Nina P Gritsan
Iliya V Yeletskikh
Viktor A Bagryansky
Yuri N Molin

关键词

抽象

The degenerate electron exchange (DEE) reaction involving radical cations (RCs) of n-nonane, n-dodecane, and n-hexadecane in n-hexane solution was studied over the temperature range 253-313 K using the method of time-resolved magnetic field effect in recombination fluorescence of spin-correlated radical ion pairs. In the dilute solutions the rate constant of DEE was found to be 200 times slower than the diffusion limit. Using n-nonane as an example, we showed that two reasons are responsible for the low value of the RC self-exchange rate: (1) conformational variability of molecules and RCs and (2) the activation barrier of DEE reaction. The calculations of the reaction enthalpy performed by the B3LYP/6-31G(d) method indicated that electron transfer can be effective only upon collision of RC with a neutral molecule either in the all-trans conformation or in the conformation differing from the latter by rotation of the end ethyl fragment. The activation barrier of the DEE reaction was estimated using the reorganization energy of the internal degrees of freedom calculated at the B3LYP level and was found to be about 6 kcal/mol. A possible influence of the interaction between RC and a neutral molecule in an encounter complex on DEE rate constant is also discussed.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge