中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2018-Sep

Dendritic peptide bolaamphiphiles for siRNA delivery to primary adipocytes.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Alexander C Eldredge
Mark E Johnson
Yang Cao
Lin Zhang
Can Zhao
Zhengxia Liu
Qin Yang
Zhibin Guan

关键词

抽象

Obesity is a major risk factor for diabetes, heart disease and other health problems. Adipose tissue plays a central role in the development of obesity and obesity-associated diseases. Gene therapy targeting adipose tissue may provide a promising strategy for obesity treatment. However, nucleic acid delivery to adipose tissue or even cultured adipocytes is challenging due to low delivery efficacy and high toxicity of the current cationic lipid based delivery systems, or monoamphiphiles. Herein, we report using dendritic peptide bolaamphiphiles (bolas) to deliver siRNA to primary adipocytes and hepatocytes. The bola consists of two l-Lysine dendrons connected to a fluorocarbon core through disulfide linkages. The Lysine dendrons are functionalized with l-histidine and l-tryptophan to promote endosomal escape and cellular uptake. The bola exhibited over 70% knockdown of GAPDH gene in both primary adipocytes and hepatocytes. Importantly, different from Lipofectamine that significantly reduced genes involved in lipolysis, lipogenesis, fatty acid oxidation and ketogenesis, the bolas had little to no effect on these genes. These results demonstrate the bola as a promising new vector for clinical and experimental applications for delivery of siRNA to metabolic organs.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge