中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of neurobiology 1984-Sep

Depression of fast axonal transport produced by tullidora.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
E J Muñoz-Martínez
D Massieu
S Ochs

关键词

抽象

The fast axoplasmic transport of labeled proteins was studied in cats showing hindlimb paralysis 4-7 weeks after a single oral dose of tullidora (Karwinskia humboldtiana) toxins. The isotope (3H-leucine) was injected into the spinal ganglion and the contralateral spinal cord of the seventh lumbar segment in order to study transport in sensory and motor fibers. The axoplasmic transport in motor fibers of the sciatic nerve was clearly altered in tullidora-treated cats. The majority of these animals showed a gradual decline of radioactivity from the cord to the periphery instead of the clear-cut wave front always seen in normal cats. An apparent wave was seen in three treated cats but the wave peak was behind the normal position and the slope of the wave front was reduced. While the rate of transport indicated by the farthest extent of the foot of the slope was not in all cases significantly changed, the results all indicated a hindered transport by the reduced slope front in the distal segments of the motor axons. In contrast, the axoplasmic transport appeared normal in the sensory fibers of all but one tullidora-treated cat. Light and electron microscopy of medial gastrocnemius and sural (cutaneous) nerves revealed axonal constrictions and axolemal irregularities associated with organelle retention after tullidora treatment. Also, some mitochondria appeared swollen. These changes were more frequent and intense in the motor nerve fibers than in the cutaneous nerve fibers.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge