中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1994-Feb

Development of Endopeptidase Activities in Maize (Zea mays L.) Endosperms.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
W. Mitsuhashi
A. Oaks

关键词

抽象

An activity stain was used after native polyacrylamide gel electrophoresis, and at least 17 different endopeptidase activities were detected in maize (Zea mays L.) endosperm extracts prepared during the first 6 d after imbibition. The enzymes detected were classified into four groups based on their time of appearance and on their mobility in polyacrylamide gels. The first group, which included two enzymes present in dry endosperms, disappeared soon after imbibition. The second group, comprising five activity bands, appeared during the first 2 to 3 d after imbibition and then disappeared. The third set of enzymes increased continuously throughout the experimental period. The fourth group appeared after d 3 and remained at a constant level after that time. The endopeptidase activities were characterized by the effect of specific inhibitors on their activities. The two enzymes of the first group are metalloendopeptidases based on their sensitivity to ethylenediaminetetracetate (EDTA). Enzymes of the second, third, and fourth groups are sulfhydryl-endopeptidases as judged by their sensitivity to antipain, chymostatin, leupeptin, and E-64 and by their requirement for 2-mercaptoethanol. Pepstatin, phenylmethylsulfonyl fluoride, or EDTA had no effect on these enzymes. Many of the second, third, and fourth group enzymes cleaved [alpha]-zein-rich proteins as well as such easily obtained proteins as gelatin (used in our standard assay) and hemoglobin. The second group had a high affinity for [gamma]-zein, whereas none of the bands in the fourth group of enzymes cleaved this type of zein. The two metalloenzymes of the first group cleaved neither [alpha]- nor [gamma]-zeins.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge