中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Oncology 2010-Mar

Diallylpolysulfides induce growth arrest and apoptosis.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Corinna Busch
Claus Jacob
Awais Anwar
Torsten Burkholz
Lalla Aicha Ba
Claudia Cerella
Marc Diederich
Wolfgang Brandt
Ludger Wessjohann
Mathias Montenarh

关键词

抽象

Garlic-derived organo sulphur compounds such as diallylsulfides provide a significant protection against carcinogenesis. Chemically synthesized, and highly pure diallylsulfides with a chain of 1-4 sulphur atoms, as well as a range of control compounds, were employed to investigate the influence of these agents on cell viability, cell cycle arrest and induction of apoptosis in HCT116 human colon cancer cells. Diallyltrisulfide, and even more efficiently diallyltetrasulfide treatment of HCT116 cells led to a reduced cell viability, cell cycle arrest and apoptosis. A similar activity was found for the propyl-analogues, while mono- and disulfides were considerably less active. Initial calculations point toward the ability of tri- and tetrasulfides to form reactive oxygen species (ROS). Here, we found that the induction of apoptosis was indeed dependent on the redox-state of the cell, with anti-oxidants being able to prevent sulfide-induced apoptosis. Furthermore, using HCT116 cells which were either positive or negative for p53 revealed that p53 is clearly dispensable for induction of apoptosis. Growth arrest and induction of apoptosis is associated with a considerable reduction of the level of cdc25C. These results support the therapeutic potential of polysulfides and allow insight into the mechanisms based on the polysulfide biochemistry.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge