中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Nutrition and Food Research 2010-Sep

Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Dragana Stanic
Evanthia Monogioudi
Ercili Dilek
Jelena Radosavljevic
Marina Atanaskovic-Markovic
Olga Vuckovic
Lantto Raija
Maija Mattinen
Johanna Buchert
Tanja Cirkovic Velickovic

关键词

抽象

Crosslinking enzymes are frequently used in bioprocessing of dairy products. The aim of this study was to examine the effects of enzymatic crosslinking on IgE binding, allergenicity and digestion stability of beta-casein (CN). beta-CN was crosslinked by transglutaminase, tyrosinase, mushroom tyrosinase/caffeic acid and laccase/caffeic acid. The IgE binding to beta-CN was compared in vitro by CAP inhibition assay, ELISA inhibition as well as ex vivo by basophil activation assay. Crosslinked CNs were digested by simulated gastric fluid for 15 and 60 min and obtained digests analyzed for their ability to inhibit IgE binding by CAP inhibition assay and SDS-PAGE. The ability of crosslinked CNs to activate basophils was significantly reduced in seven patients in the case of CN crosslinked by laccase and moderately reduced in the case of tyrosinase/caffeic acid crosslinked CN (in two cow's milk allergy patients tested with different allergen concentrations). The response to various crosslinked CNs differed individually among patients' sera tested by ELISA inhibition assay. The presence of caffeic acid hampered digestion by pepsin, and this effect was most pronounced for the tyrosinase/caffeic acid crosslinked CN. The laccase/caffeic acid and mushroom tyrosinase/caffeic acid had the highest potential in mitigating IgE binding and allergenicity of the beta-CN out of all investigated enzymes. The presence of a small phenolic compound also increased digestion stability of beta-CN.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge